Translational research : the journal of laboratory and clinical medicine
-
The approach to molecular genetic studies of complex phenotypes evolved considerably during the recent years. The candidate gene approach, which is restricted to an analysis of a few single-nucleotide polymorphisms (SNPs) in a modest number of cases and controls, has been supplanted by the unbiased approach of genome-wide association studies (GWAS), wherein a large number of tagger SNPs are typed in many individuals. GWAS, which are designed on the common disease-common variant hypothesis (CD-CV), identified several SNPs and loci for complex phenotypes. ⋯ Robust phenotyping and large-scale sequencing studies are essential to extract the information content of the vast number of DNA sequence variants (DSVs) in the genome. To garner meaningful clinical information and link the genotype to a phenotype, the identification and characterization of a large number of causal fields beyond the information content of DNA sequence variants would be necessary. This review provides an update on the current progress and limitations in identifying DSVs that are associated with phenotypic effects.
-
In the era of lung-protective mechanical ventilation using limited tidal volumes, higher respiratory rates are applied to maintain adequate minute volume ventilation. However, higher respiratory rates may contribute to ventilator-induced lung injury (VILI). Induced hypothermia reduces carbon dioxide production and might allow for lower respiratory rates during mechanical ventilation. ⋯ Reducing the respiratory rate in combination with hypothermia did not reduce the parameters of the lung injury. In conclusion, hypothermia protected from lung injury in a physiologic VILI model by reducing inflammation. Decreasing the respiratory rate mildly did not enhance protection.
-
Heme oxygenase-1 (HO-1) displays anti-inflammatory and cytoprotective activities in sepsis. Here, we investigated the effects of HO-1 on thrombus formation and the protein C system in a septic C57BL/6 mouse model induced by cecal ligation and perforation (CLP). Septic mice were either preinjected with the vehicle, pretreated with hemin (an HO-1 inducer) or zinc protoporphyrin IX (ZnPP, an HO-1 inhibitor), or given a combination of hemin + ZnPP. ⋯ In contrast, ZnPP showed opposite effects to hemin and reversed the effects of hemin by inhibiting the activity of HO-1. The administration of tricarbonyl dichloro ruthenium (II) dimer (CORM-2), which is a CO-releasing molecule, had a similar effect to hemin on thrombosis and the protein C system. The data indicate that the enhanced induction of HO-1 inhibits thrombus formation and affects the protein C system in sepsis.