Translational research : the journal of laboratory and clinical medicine
-
Prader-Willi syndrome (PWS) is a complex and multisystem neurobehavioral disorder. The molecular mechanism of PWS is deficiency of paternally expressed gene gene or genes from the chromosome 15q11-q13. Due to imprinted gene regulation, the same genes in the maternal chromosome 15q11-q13 are structurally intact but transcriptionally repressed by an epigenetic mechanism. ⋯ High content screening of small molecule libraries using cells derived from transgenic mice carrying the SNRPN-EGFP fusion protein has discovered that inhibitors of EHMT2/G9a, a histone 3 lysine 9 methyltransferase, are capable of reactivating expression of paternally expressed SNRPN and SNORD116 from the maternal chromosome, both in cultured PWS patient-derived fibroblasts and in a PWS mouse model. Treatment with an EMHT2/G9a inhibitor also rescues perinatal lethality and failure to thrive phenotypes in a PWS mouse model. These findings present the first evidence to support a proof-of-principle for epigenetic-based therapy for the PWS in humans.