Translational research : the journal of laboratory and clinical medicine
-
Genital herpes increases the risk of acquiring and transmitting Human Immunodeficiency Virus (HIV), is a source of anxiety for many about transmitting infection to intimate partners, and is life-threatening to newborns. A vaccine that prevents genital herpes infection is a high public health priority. An ideal vaccine will prevent both genital lesions and asymptomatic subclinical infection to reduce the risk of inadvertent transmission to partners, will be effective against genital herpes caused by herpes simplex virus types 1 and 2 (HSV-1, HSV-2), and will protect against neonatal herpes. ⋯ Many vaccine candidates are under development, including DNA, modified mRNA, protein subunit, killed virus, and attenuated live virus vaccines. Lessons learned from prior vaccine studies and select candidate vaccines are discussed, including a trivalent nucleoside-modified mRNA vaccine that our laboratory is pursuing. We are optimistic that an effective vaccine for prevention of genital herpes will emerge in this decade.
-
This perspective provides an overview of the evolution of antibiotic discovery from a largely phenotypic-based effort, through an intensive structure-based design focus, to a more holistic approach today. The current focus on antibiotic development incorporates assay and discovery conditions that replicate the host environment as much as feasible. They also incorporate several strategies, including target identification and validation within the whole cell environment, a variety of target deconvolution methods, and continued refinement of structure-based design approaches.
-
The global burden of bacterial infections is rising due to increasing resistance to the majority of first-line antibiotics, rendering these drugs ineffective against several clinically important pathogens. Limited transport of antibiotics into cells compounds this problem for gram-negative bacteria that exhibit prominent intracellular lifecycles. Furthermore, poor bioavailability of antibiotics in infected tissues necessitates higher doses and longer treatment regimens to treat resistant infections. ⋯ However, in vivo therapeutic efficacy of HDTs is reliant on adequate bioavailability. Particle-based formulations demonstrate the potential to enable targeted drug delivery, enhance cellular uptake, and increase drug concentration in the host cell of HDTs. This review selected HDTs for clinically important pathogens, identifies formulation strategies that can improve their therapeutic efficacy and offers insights toward further development of HDTs for bacterial infections.
-
The sexually transmitted infection gonorrhea, caused by the Gram-negative bacterium Neisseria gonorrhoeae, can cause urethritis, cervicitis, and systemic disease, among other manifestations. N. gonorrhoeae has rapidly rising incidence along with increasing levels of antibiotic resistance to a broad range of drugs including first-line treatments. The rise in resistance has led to fears of untreatable gonorrhea causing substantial disease globally. ⋯ Second, vaccine development, long an important goal, is advancing. Third, new diagnostics promise rapid detection of antibiotic resistance and a shift from empiric to tailored treatment. The deployment of these new tools for addressing the challenge of antibiotic resistance will require careful consideration to provide optimal care for all patients while extending the lifespan of treatment regimens.
-
Antimicrobial resistance poses a significant threat to our ability to treat infections. Especially concerning is the emergence of carbapenem-resistant Enterobacteriaceae (CRE). In the new 2019 United States Centers for Disease Control and Prevention Antibiotic Resistance Report, CRE remain in the most urgent antimicrobial resistance threat category. ⋯ This article reviews recently approved agents with activity against CRE and a range of modalities in the pipeline, from early academic investigation to those in clinical trials, with a focus on structural aspects of new antibiotics. Another article in this series addresses the need to incentive pharmaceutical companies to invest in CRE antimicrobial development and to encourage hospitals to make these agents available in their formularies. This article will also consider the need for change in requirements for antimicrobial susceptibility testing implementation in clinical laboratories to address practical roadblocks that impede our efforts to provide even existing CRE antibiotics to our patients.