Translational research : the journal of laboratory and clinical medicine
-
Multicenter Study
Supervised and unsupervised learning to define the cardiovascular risk of patients according to an extracellular vesicle molecular signature.
Cardiovascular (CV) disease represents the most common cause of death in developed countries. Risk assessment is highly relevant to intervene at individual level and implement prevention strategies. Circulating extracellular vesicles (EVs) are involved in the development and progression of CV diseases and are considered promising biomarkers. ⋯ Prevalence of hypertension, diabetes, chronic heart failure, and organ damage (defined as left ventricular hypertrophy and/or microalbuminuria) increased progressively from Cluster-I to Cluster-III. Several EV antigens, including markers for platelets (CD41b-CD42a-CD62P), leukocytes (CD1c-CD2-CD3-CD4-CD8-CD14-CD19-CD20-CD25-CD40-CD45-CD69-CD86), and endothelium (CD31-CD105) were independently associated with CV risk indicators and correlated to age, blood pressure, glucometabolic profile, renal function, and SCORE risk. EV profiling, obtained from minimally invasive blood sampling, allows accurate patient stratification according to CV risk profile.
-
Fetal hemoglobin (HbF) is known to lessen the severity of sickle cell disease (SCD), through reductions in peripheral vaso-occlusive disease and reduced risk for cerebrovascular events. However, the influence of HbF on oxygen delivery to high metabolism tissues like the brain, or its influence on cerebral perfusion, metabolism, inflammation or function have not been widely studied. ⋯ Brain microstructure assessed by DTI fractional anisotropy improved, while myo-inositol levels increased, suggesting improved microstructural integrity and reduced cell loss. Our results suggest that increasing γ levels not only improves sickle peripheral disease, but also improves brain perfusion and oxygen delivery while reducing brain inflammation while protecting brain microstructural integrity.
-
Review Meta Analysis
Exosomes as prognostic biomarkers in pancreatic ductal adenocarcinoma -a systematic review and meta-analysis.
Extensive research is focused on the role of liquid biopsy in pancreatic cancer since reliable diagnostic and follow-up biomarkers represent an unmet need for this highly lethal malignancy. We performed a systematic review and meta-analysis on the prognostic value of exosomal biomarkers in pancreatic ductal adenocarcinoma (PDAC). MEDLINE, Embase, Scopus, Web of Science, and CENTRAL were systematically searched on the 18th of January, 2021 for studies reporting on the differences in overall (OS) and progression-free survival (PFS) in PDAC patients with positive vs negative exosomal biomarkers isolated from blood. ⋯ Detectable exosomal micro ribonucleic acids were associated with a decreased OS (UHR = 4.08, CI: 2.16-7.69, I2 = 46.9%, P = 0.152) across various stages. Our results reflect the potential of exosomal biomarkers for prognosis evaluation in PDAC. The associated heterogeneity reflects the variability of study methods and need for their uniformization before transition to clinical use.
-
Type I interferon (IFN) is critical in our defense against viral infections. Increased type I IFN pathway activation is a genetic risk factor for systemic lupus erythematosus (SLE), and a number of common risk alleles contribute to the high IFN trait. We hypothesized that these common gain-of-function IFN pathway alleles may be associated with protection from mortality in acute COVID-19. ⋯ Variants in the IRF7 and IRF8 genes were associated with mortality from COVID-19 in African-American subjects, and these genetic effects were more pronounced in older subjects. Combining genetic information with blood biomarker data such as C-reactive protein, troponin, and D-dimer resulted in significantly improved predictive capacity, and in both ancestral backgrounds the risk genotypes were most relevant in those with positive biomarkers (OR for death between 14 and 111 in high risk genetic/biomarker groups). This study confirms the critical role of the IFN pathway in defense against COVID-19 and viral infections, and supports the idea that some common SLE risk alleles exert protective effects in antiviral immunity.
-
The cortactin gene (CTTN), encoding an actin-binding protein critically involved in cytoskeletal dynamics and endothelial cell (EC) barrier integrity, contains single nucleotide polymorphisms (SNPs) associated with severe asthma in Black patients. As loss of lung EC integrity is a major driver of mortality in the Acute Respiratory Distress Syndrome (ARDS), sepsis, and the acute chest syndrome (ACS), we speculated CTTN SNPs that alter EC barrier function will associate with clinical outcomes from these types of conditions in Black patients. In case-control studies, evaluation of a nonsynonymous CTTN coding SNP Ser484Asn (rs56162978, G/A) in a severe sepsis cohort (725 Black subjects) revealed significant association with increased risk of sepsis mortality. ⋯ Human lung EC expressing the cortactin S484N transgene exhibited: (i) delayed EC barrier recovery following thrombin-induced permeability; (ii) reduced levels of critical Tyr486 cortactin phosphorylation; (iii) inhibited binding to the cytoskeletal regulator, nmMLCK; and (iv) attenuated EC barrier-promoting lamellipodia dynamics and biophysical responses. ARDS-challenged Cttn+/- heterozygous mice exhibited increased lung vascular permeability (compared to wild-type mice) which was significantly attenuated by IV delivery of liposomes encargoed with CTTN WT transgene but not by CTTN S484N transgene. In summary, these studies suggest that the CTTN S484N coding SNP contributes to severity of inflammatory injury in Black patients, potentially via delayed vascular barrier restoration.