Translational research : the journal of laboratory and clinical medicine
-
Cell inflammation and death are closely linked processes contributing to endothelial dysfunction, which plays a critical role in atherogenesis. Activation of the NLRP3 inflammasome causes pyroptosis, the Gasdermin D (GSDMD)-mediated inflammatory cell death. The non-canonical NF-κB pathway has been implicated in inflammation; however, its role in NLRP3 inflammasome-mediated endothelial dysfunction has not been investigated. ⋯ Consistent with the observations in cultured endothelium, endothelial-specific deficiency of NIK or IRF-1 attenuated atherosclerosis in high-fat diet-fed Apoe-null mice. These data demonstrate that the non-canonical NF-κB pathway contributes to NLRP3 inflammasome-mediated endothelial pyroptosis and the development of atherosclerosis through GSDMD activation in a manner dependent on IRF-1. Further investigation may facilitate the identification of specific therapeutic targets for atherosclerotic heart diseases.
-
Review
Risk Factors for Clonal Hematopoiesis of Indeterminate Potential and Mosaic Chromosomal Alterations.
Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) of the autosomes, X, and Y chromosomes are aging-related somatic mutations detectable in peripheral blood. The presence of these acquired mutations predisposes otherwise healthy adults to increased risk of several chronic aging-related conditions including hematologic cancers, atherosclerotic cardiovascular diseases, other inflammatory conditions, and mortality. While the public health impact and disease associations of these blood-derived somatic mutations continue to expand, the inherited, behavioral/lifestyle, environmental risk factors and comorbid conditions that influence their occurrence and progression have been less well characterized. ⋯ Some loci, such as TERT, ATM, TP53, CHEK2, and TCL1A, have overlapping associations with different types of CHIP, mCAs, and cancer predisposition. Various environmental or co-morbid contexts associated with presence or expansion of specific CHIP or mCA mutations are beginning to be elucidated, such as cigarette smoking, diet, cancer chemotherapy, particulate matter, and premature menopause. Further characterization of the germline genetic and environmental correlates of CHIP/mCAs may inform our ability to modify their progression and ultimately reduce the risk and burden of chronic diseases associated with these clonal somatic phenomena.
-
Genetic diagnosis of familial hypercholesterolemia (FH) remains unexplained in 30 to 70% of patients after exclusion of monogenic disease. There is now a growing evidence that a polygenic burden significantly modulates LDL-cholesterol (LDL-c) concentrations. Several LDL-c polygenic risk scores (PRS) have been set up. ⋯ These results were replicated using the UK biobank. This new 165-SNP PRS, usable in routine diagnosis, exhibits better diagnosis abilities for a polygenic hypercholesterolemia diagnosis. It would be a valuable tool to optimize referral for whole genome sequencing.
-
Tyrosine kinase inhibitor (TKI) is a standard treatment for patients with NSCLC harboring constitutively active epidermal growth factor receptor (EGFR) mutations. However, most rare EGFR mutations lack treatment regimens except for the well-studied ones. We constructed two EGFR variant libraries containing substitutions, deletions, or insertions using the saturation mutagenesis method. ⋯ Moreover, the top 5% of the enriched insertion variants included a glycine or serine insertion at high frequency. We present a comprehensive reference for the sensitivity of EGFR variants to five commonly used TKIs. The approach used here should be applicable to other genes and targeted drugs.
-
Takayasu arteritis (TAK) is a chronic large vessel disease characterized by aortic fibrotic thickening, which was mainly mediated by activation of aorta adventitial fibroblasts (AAFs). Our previous genetic study demonstrated that TAK-associated locus IL6 rs2069837 regulated glycoprotein non-metastatic melanoma protein B (GPNMB) expression. Thus, this study aimed to investigate the pathogenic role of GPNMB in TAK. ⋯ Furthermore, we showed that leflunomide treatment inhibited GPNMB-mediated fibrosis in AAFs, as well as GPNMB expression in macrophages, which were also partially validated in leflunomide-treated patients. Taken together, these data indicated that macrophage-derived GPNMB promotes AAFs ECM expression via the integrin αVβ1 receptor and Akt/Erk signaling pathway and leflunomide might play an anti-fibrotic role in TAK by interfering with the macrophage-derived GPNMB/AAFs axis. This study provides evidence that targeting GPNMB is a potential therapeutic strategy for treating vascular fibrosis in TAK.