Translational research : the journal of laboratory and clinical medicine
-
Clonal hematopoiesis (CH) occurs in hematopoietic stem cells with increased risks of progressing to hematologic malignancies. CH mutations are predominantly found in aged populations and correlate with an increased incidence of cardiovascular and other diseases. Increased lines of evidence demonstrate that CH mutations are closely related to the inflammatory bone marrow microenvironment. ⋯ We focus on the most commonly mutated and well-studied genes in CH and their contributions to the innate immune responses and inflammatory signaling, especially in the hematopoietic cells of bone marrow. We also aimed to discuss the interrelationship between inflammatory bone marrow microenvironment and CH mutations. Finally, we provide our perspectives on the challenges in the field and possible future directions to help understand the pathophysiology of CH.
-
Age is the most important risk factor for cardiovascular disease and appears to be more than a marker of cumulative exposure to other risk factors such as dyslipidemia and hypertension. With aging, genetic mutations occur that are not present in our germline DNA, observed as somatic mosaicism. Hematopoietic stem cells have an increased chance of developing mosaicism because they are highly proliferative, and mutations with survival benefits can establish clonal populations. ⋯ The subset of clonal hematopoiesis in which a driver mutation with variant allele frequency of at least 2% occurs in a gene implicated in hematologic malignancies but in the absence of known hematologic malignancy or other clonal disorder is termed clonal hematopoiesis of indeterminate potential (CHIP). Large-scale exome-sequencing projects have recently enabled the study of CHIP frequency, gene-specific analyses, and longitudinal clinical consequences of CHIP, including an observed increased risk for cardiovascular disease. Animal models provide insight into the mechanisms by which CHIP increases cardiovascular disease risk, and combined animal, clinical, and epidemiological data suggest therapeutic implications for CHIP in cardiovascular disease prevention.
-
Review
Risk Factors for Clonal Hematopoiesis of Indeterminate Potential and Mosaic Chromosomal Alterations.
Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) of the autosomes, X, and Y chromosomes are aging-related somatic mutations detectable in peripheral blood. The presence of these acquired mutations predisposes otherwise healthy adults to increased risk of several chronic aging-related conditions including hematologic cancers, atherosclerotic cardiovascular diseases, other inflammatory conditions, and mortality. While the public health impact and disease associations of these blood-derived somatic mutations continue to expand, the inherited, behavioral/lifestyle, environmental risk factors and comorbid conditions that influence their occurrence and progression have been less well characterized. ⋯ Some loci, such as TERT, ATM, TP53, CHEK2, and TCL1A, have overlapping associations with different types of CHIP, mCAs, and cancer predisposition. Various environmental or co-morbid contexts associated with presence or expansion of specific CHIP or mCA mutations are beginning to be elucidated, such as cigarette smoking, diet, cancer chemotherapy, particulate matter, and premature menopause. Further characterization of the germline genetic and environmental correlates of CHIP/mCAs may inform our ability to modify their progression and ultimately reduce the risk and burden of chronic diseases associated with these clonal somatic phenomena.