Translational research : the journal of laboratory and clinical medicine
-
Traumatic brain injury (TBI) has a significant impact on cognitive function, affecting millions of people worldwide. Myelin loss is a prominent pathological feature of TBI, while well-functioning myelin is crucial for memory and cognition. Utilizing drug repurposing to identify effective drug candidates for TBI treatment has gained attention. ⋯ In contrast, animals treated with clemastine showed an increase in mature oligodendrocytes, enhanced myelination, and improved performance in the behavioral tests. These preliminary findings support the therapeutic value of clemastine in alleviating TBI-induced cognitive impairment, with substantial clinical translational potential. Our findings also underscore the potential of remyelinating therapies for TBI.
-
Prolonged sevoflurane anesthesia is the primary factor contributing to the development of perioperative neurocognitive disorders (PND). Recent studies have highlighted neuronal apoptosis and abnormal dendritic structures as crucial features of PND. Astrocytes-derived exosomes (ADEs) have been identified as carriers of microRNAs (miRNAs), playing a vital role in cell-to-cell communication through transmitting genetic material. ⋯ Subsequent gain- and loss-of-function experiments were conducted to validate the role of the miR-26a-5p/NCAM axis. Finally, we found that the AKT/GSK3-β/CRMP2 signaling pathway was involved in regulating neurons through exosomal miR-26a-5p. Taken together, our findings suggest that the treatment with miR-26a-5p in ADEs can improve neurocognitive outcomes induced by long-term sevoflurane anesthesia, suggesting a promising approach for retarding the progress of PND.
-
Tyrosine kinase inhibitors (TKIs) are frequently utilized in the management of malignant tumors. Studies have indicated that anlotinib has a significant inhibitory effect on oral squamous cell carcinoma (OSCC). However, the mechanisms underlying the development of resistance with long-term anlotinib treatment remain obscure. ⋯ Bioenergetic profiling demonstrated that METTL1 drived a metabolic shift from glycolysis to OXPHOS in anlotinib-resistant OSCC cells. Additionally, inhibition of OXPHOS biochemically negated METTL1's impact on anlotinib resistance. Overall, this study underscores the pivotal role of METTL1-mediated m7G tRNA modification in anlotinib resistance and lays the groundwork for novel therapeutic interventions to counteract resistance in OSCC.
-
Interleukin (IL)-33, a cytokine involved in immune responses, can activate its receptor, suppression of tumorigenicity 2 (ST2), is elevated during atrial fibrillation (AF). However, the role of IL-33/ST2 signaling in atrial arrhythmia is unclear. This study explored the pathological effects of the IL-33/ST2 axis on atrial remodeling and arrhythmogenesis. ⋯ IL-33-injected mice had more atrial ectopic beats and increased AF episodes, greater atrial fibrosis, and elevation of NF-κB/NLRP3 signaling than did controls or mice treated with IL-33 combined with anti-ST2 antibody. Thus, IL-33 recombinant protein treatment promotes atrial remodeling through ST2 signaling. Blocking the IL-33/ST2 axis might be an innovative therapeutic approach for patients with atrial arrhythmia and elevated serum IL-33.
-
Inflammation is a crucial pathophysiological mechanism in atherosclerosis (AS). This study aims to investigate the impact of sulfotransferase family 2b member 1 (SULT2B1) on the inflammatory response of macrophages and the progression of AS. Here, we reported that SULT2B1 expression increased with the progression of AS. ⋯ Elevated SULT2B1 expression in monocytes with GG corresponded to elevated inflammatory factor levels and more unstable coronary plaques. To summarize, our study demonstrated that the critical role of SULT2B1/Lncgga3-204/SMAD4/NF-κB in AS progression. SULT2B1 serves as a novel biomarker indicating inflammatory status, thereby offering insights into potential therapeutic strategies for AS.