Translational research : the journal of laboratory and clinical medicine
-
Hand-foot skin reaction (HFSR) is the most debilitating and prevalent side effect caused by multikinase inhibitors (MKIs) that share vascular endothelial growth factor receptor (VEGFR) as the common inhibition target, such as sorafenib, regorafenib, axitinib, etc. Though not life-threatening, HFSR can significantly deteriorate patients' quality of life and jeopardize the continuity of cancer therapy. Despite years of efforts, there are no FDA-approved treatments for HFSR and the understanding of the precise pathogenic mechanism is still limited. ⋯ Local application of GTN mitigated tissue damage in a rat model, while not impacting the anti-tumor effect of the MKI in HepG2 tumor-bearing mice. Finally, GTN ointment alleviated cutaneous damages and improved quality of life in 6 HFSR patients. Our study proposed and validated the mechanism to counteract VEGFR inhibition, providing GTN as the potential treatment to MKI-induced HFSR, which may further improve the therapeutic window of various MKI based cancer therapies.
-
Long noncoding RNAs (lncRNAs) and miRNAs have been reported to participate in intervertebral disc degeneration (IDD) progression. However, the key lncRNA-miRNA axis and its corresponding affected hub genes in IDD remain unknown. In this study, weighted gene coexpression network analysis (WGCNA) was first used to determine the key gene cluster and hub genes implicated in IDD progression. ⋯ Furthermore, miR-214-3p overexpression partially reversed the effects of ADIRF-AS1 overexpression. Collectively, these data suggest that ADIRF-AS1 overexpression could mitigate IDD by binding to miR-214-3p to upregulate SERPINA1. Additional studies (especially those using an axial loading-induced IDD animal model) will be needed to further validate the role of the ADIRF-AS1/miR-214-3p/SERPINA1 signaling axis in IDD progression.
-
Multicenter Study
Supervised and unsupervised learning to define the cardiovascular risk of patients according to an extracellular vesicle molecular signature.
Cardiovascular (CV) disease represents the most common cause of death in developed countries. Risk assessment is highly relevant to intervene at individual level and implement prevention strategies. Circulating extracellular vesicles (EVs) are involved in the development and progression of CV diseases and are considered promising biomarkers. ⋯ Prevalence of hypertension, diabetes, chronic heart failure, and organ damage (defined as left ventricular hypertrophy and/or microalbuminuria) increased progressively from Cluster-I to Cluster-III. Several EV antigens, including markers for platelets (CD41b-CD42a-CD62P), leukocytes (CD1c-CD2-CD3-CD4-CD8-CD14-CD19-CD20-CD25-CD40-CD45-CD69-CD86), and endothelium (CD31-CD105) were independently associated with CV risk indicators and correlated to age, blood pressure, glucometabolic profile, renal function, and SCORE risk. EV profiling, obtained from minimally invasive blood sampling, allows accurate patient stratification according to CV risk profile.
-
Review Meta Analysis
Exosomes as prognostic biomarkers in pancreatic ductal adenocarcinoma -a systematic review and meta-analysis.
Extensive research is focused on the role of liquid biopsy in pancreatic cancer since reliable diagnostic and follow-up biomarkers represent an unmet need for this highly lethal malignancy. We performed a systematic review and meta-analysis on the prognostic value of exosomal biomarkers in pancreatic ductal adenocarcinoma (PDAC). MEDLINE, Embase, Scopus, Web of Science, and CENTRAL were systematically searched on the 18th of January, 2021 for studies reporting on the differences in overall (OS) and progression-free survival (PFS) in PDAC patients with positive vs negative exosomal biomarkers isolated from blood. ⋯ Detectable exosomal micro ribonucleic acids were associated with a decreased OS (UHR = 4.08, CI: 2.16-7.69, I2 = 46.9%, P = 0.152) across various stages. Our results reflect the potential of exosomal biomarkers for prognosis evaluation in PDAC. The associated heterogeneity reflects the variability of study methods and need for their uniformization before transition to clinical use.
-
Type I interferon (IFN) is critical in our defense against viral infections. Increased type I IFN pathway activation is a genetic risk factor for systemic lupus erythematosus (SLE), and a number of common risk alleles contribute to the high IFN trait. We hypothesized that these common gain-of-function IFN pathway alleles may be associated with protection from mortality in acute COVID-19. ⋯ Variants in the IRF7 and IRF8 genes were associated with mortality from COVID-19 in African-American subjects, and these genetic effects were more pronounced in older subjects. Combining genetic information with blood biomarker data such as C-reactive protein, troponin, and D-dimer resulted in significantly improved predictive capacity, and in both ancestral backgrounds the risk genotypes were most relevant in those with positive biomarkers (OR for death between 14 and 111 in high risk genetic/biomarker groups). This study confirms the critical role of the IFN pathway in defense against COVID-19 and viral infections, and supports the idea that some common SLE risk alleles exert protective effects in antiviral immunity.