Translational research : the journal of laboratory and clinical medicine
-
The cortactin gene (CTTN), encoding an actin-binding protein critically involved in cytoskeletal dynamics and endothelial cell (EC) barrier integrity, contains single nucleotide polymorphisms (SNPs) associated with severe asthma in Black patients. As loss of lung EC integrity is a major driver of mortality in the Acute Respiratory Distress Syndrome (ARDS), sepsis, and the acute chest syndrome (ACS), we speculated CTTN SNPs that alter EC barrier function will associate with clinical outcomes from these types of conditions in Black patients. In case-control studies, evaluation of a nonsynonymous CTTN coding SNP Ser484Asn (rs56162978, G/A) in a severe sepsis cohort (725 Black subjects) revealed significant association with increased risk of sepsis mortality. ⋯ Human lung EC expressing the cortactin S484N transgene exhibited: (i) delayed EC barrier recovery following thrombin-induced permeability; (ii) reduced levels of critical Tyr486 cortactin phosphorylation; (iii) inhibited binding to the cytoskeletal regulator, nmMLCK; and (iv) attenuated EC barrier-promoting lamellipodia dynamics and biophysical responses. ARDS-challenged Cttn+/- heterozygous mice exhibited increased lung vascular permeability (compared to wild-type mice) which was significantly attenuated by IV delivery of liposomes encargoed with CTTN WT transgene but not by CTTN S484N transgene. In summary, these studies suggest that the CTTN S484N coding SNP contributes to severity of inflammatory injury in Black patients, potentially via delayed vascular barrier restoration.
-
Caloric Restriction (CR) extends lifespan and augments cellular stress-resistance from yeast to primates, making CR an attractive strategy for organ protection in the clinic. Translation of CR to patients is complex, due to problems regarding adherence, feasibility, and safety concerns in frail patients. Novel tailored dietary regimens, which modulate the dietary composition of macro- and micronutrients rather than reducing calorie intake promise similar protective effects and increased translatability. ⋯ We systematically analyzed six dietary preconditioning protocols - fasting mimicking diet (FMD), ketogenic diet (KD), dietary restriction of branched chained amino acids (BCAA), two dietary regimens restricting sulfur-containing amino acids (SR80/100) and CR - in a rodent model of renal ischemia-reperfusion injury (IRI) to quantify diet-induced resilience in kidneys. Of the administered diets, FMD, SR80/100 and CR efficiently protect from kidney damage after IRI. Interestingly, these approaches show overlapping changes in oxidative and hydrogen sulfide (H2S)-dependent cysteine catabolism as a potential common mechanism of organ protection.
-
Klotho is an aging-suppressor gene. Klotho gene deficiency causes heart failure in Klotho-hypomorphic mutant (KL (-/-)) mice. RNA-seq and western blot analysis showed that adenylyl cyclase type IV (AC4) mRNA and protein expression was largely decreased in cardiomyocytes of KL (-/-) mice. ⋯ AC4 could be a potential therapeutic target for heart failure associated with Klotho deficiency. Heart failure is the major cause of mortality in patients with chronic kidney disease (CKD). A decrease in Klotho levels is linked to CKD.
-
The aim of this study was to identify miRNAs that regulate AKI and develop their applications as diagnostic biomarkers and therapeutic agents. First, kidney tissues from two different AKI mouse models, namely, AKI induced by the administration of lipopolysaccharide (LPS) causing sepsis (LPS-AKI mice) and AKI induced by renal ischemia-reperfusion injury (IRI-AKI mice), were exhaustively screened for their changes of miRNA expression compared with that of control mice by microarray analysis followed by quantitative RT-PCR. The initial profiling newly identified miRNA-5100, whose expression levels significantly decreased in kidneys in both LPS-AKI mice and IRI-AKI mice. ⋯ Furthermore, serum levels of miRNA-5100 in patients with AKI were identified as significantly lower than those of healthy subjects. ROC analysis showed that the serum expression level of miRNA-5100 can identify AKI (cut-off value 0.14, AUC 0.96, sensitivity 1.00, specificity 0.833, p<0.05). These results suggest that miRNA-5100 regulates AKI and may be useful as a novel diagnostic biomarker and therapeutic target for AKI.
-
Fetal hemoglobin (HbF) is known to lessen the severity of sickle cell disease (SCD), through reductions in peripheral vaso-occlusive disease and reduced risk for cerebrovascular events. However, the influence of HbF on oxygen delivery to high metabolism tissues like the brain, or its influence on cerebral perfusion, metabolism, inflammation or function have not been widely studied. ⋯ Brain microstructure assessed by DTI fractional anisotropy improved, while myo-inositol levels increased, suggesting improved microstructural integrity and reduced cell loss. Our results suggest that increasing γ levels not only improves sickle peripheral disease, but also improves brain perfusion and oxygen delivery while reducing brain inflammation while protecting brain microstructural integrity.