Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics
-
Clinical trials in traumatic brain injury (TBI) pose complex methodological challenges, largely related to the heterogeneity of the population. The International Mission on Prognosis and Clinical Trial Design in TBI study group has explored approaches for dealing with this heterogeneity with the aim to optimize clinical trials in TBI. Extensive prognostic analyses and simulation studies were conducted on individual patient data from eight trials and three observational studies. ⋯ The statistical analysis should use an ordinal approach, based on either sliding dichotomy or proportional odds methodology. Broad inclusion criteria, prespecified covariate adjustment, and an ordinal analysis will promote an efficient trial, yielding gains in statistical efficiency of more than 40%. This corresponds to being able to detect a 7% treatment effect with the same number of patients needed to demonstrate a 10% difference with an unadjusted analysis based on the dichotomized Glasgow outcome scale.
-
Although progress is being made in the development of new clinical treatments for traumatic brain injury (TBI), little is known about whether such treatments are effective in older patients, in whom frailty, prior medical conditions, altered metabolism, and changing sensitivity to medications all can affect outcomes following a brain injury. In this review we consider TBI to be a complex, highly variable, and systemic disorder that may require a new pharmacotherapeutic approach, one using combinations or cocktails of drugs to treat the many components of the injury cascade. ⋯ Progesterone is now in phase III multicenter trial testing in the United States. We also discuss some of the potential mechanisms and pathways through which the combination of hormones may work, singly and in synergy, to enhance survival and recovery after TBI.
-
Traumatic brain injury (TBI) remains a serious health concern, and TBI is one of the leading causes of death and disability, especially among young adults. Although preventive education, increased usage of safety devices, and TBI management have dramatically increased the potential for surviving a brain injury, there is still a need to develop reliable methods to diagnose TBI, the secondary pathologies associated with TBI, and predicting the outcomes of TBI. ⋯ Although some of these changes have been reported to correlate with mortality and outcome, further research is required to identify prognostic biomarkers. This need is punctuated in mild injuries that cannot be readily detected using current techniques, as well as in defining patient risk for developing TBI-associated secondary injuries.
-
In this article, we review past and current experience in clinical trials of traumatic brain injuries (TBIs), we discuss limitations and challenges, and we summarize current directions. The focus is on severe and moderate TBIs. A systematic literature search of the years from 1980 to 2009 revealed 27 large phase III trials in TBI; we were aware of a further 6 unpublished trials. ⋯ The disappointing results in trials on neuroprotective agents in TBI have led to a critical reappraisal of clinical trial methodology. This has resulted in recommendations for preclinical workup and has triggered extensive analysis on approaches to improve the design and analysis of clinical trials in TBI. An interagency initiative toward standardization on selection and coding of data elements across the broad spectrum of TBI is ongoing, and will facilitate comparison of research findings across studies and encourage high-quality meta-analysis of individual patient data in the future.
-
Despite dramatic improvements in the management of traumatic brain injury (TBI), to date there is no effective treatment available to patients, and morbidity and mortality remain high. The damage to the brain occurs in two phases, the initial primary phase being the injury itself, which is irreversible and amenable only to preventive measures to minimize the extent of damage, followed by an ongoing secondary phase, which begins at the time of injury and continues in the ensuing days to weeks. This delayed phase leads to a variety of physiological, cellular, and molecular responses aimed at restoring the homeostasis of the damaged tissue, which, if not controlled, will lead to secondary insults. ⋯ Neuroinflammation within the injured brain has long been considered to intensify the damage sustained following TBI. However, the accumulated findings from years of clinical and experimental research support the notion that the action of inflammation may differ in the acute and delayed phase after TBI, and that maintaining limited inflammation is essential for repair. This review addresses the role of several cytokines and chemokines following focal and diffuse TBI, as well as the controversies around the use of therapeutic anti-inflammatory treatments versus genetic deletion of cytokine expression.