The anatomical record : advances in integrative anatomy and evolutionary biology
-
In May of 1994, Drs. Bob Brier and Ronn Wade produced the first modern mummy embalmed in the ancient Egyptian tradition. ⋯ The radiological study of MUMAB is combined here with the firsthand discussion of the processes that resulted in the mummy's radiographic appearance. This allows for a close examination of the assumptions made in the radiological study of ancient Egyptian mummified human remains in a way not possible for the ancient remains themselves.
-
Computed tomography scanning of mummies has been conducted for almost 40 years, and has become an increasingly popular method of mummy study in the 21st century. However, most CT scan analyses published today still do little more than praise the technique's non-destructive, non-invasive properties. ⋯ Because of this, there is very limited information available for clear interpretation of mummy CT's. This article presents a critical assessment of the development of mummy CT scanning and presents the results of two Egyptian mummies CT'ed at the Penn Museum as an example of the potentials and pitfalls of high-resolution scanning.
-
Noninvasive imaging tools have been the standard in mummy studies for several decades focusing primarily on CT scan technology. Although magnetic resonance imaging (MRI) has been attempted on mummified tissues on numerous occasions these have met with varying degrees of success. The basic physics of MRI are reviewed here with an emphasis on how the physics limit the success of MRI in mummified tissues. ⋯ MRI can generate basic images in most tissues even when significantly desiccated. Using an understanding of the essentials of MRI physics, with the adjustment of MRI parameters, the data acquisition process can be enhanced to create the best possible images. When successfully applied, MRI generated images can allow for the resolution of soft tissue differences, especially of collapsed internal organ masses, even in dehydrated mummies that are much less effectively rendered in CT scans.
-
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome plays an important role in a variety of diseases. However, the role of NLRP3 in the human intervertebral disc (IVD) degeneration remains unknown. In the present study, we assessed the expression levels of the NLRP3 inflammasome and its downstream targets caspase-1 and IL-1β in 45 degenerate and seven nondegenerate IVD samples. ⋯ There was a positive correlation between the degeneration scores and the expression levels of the NLRP3 inflammasome as well as its downstream targets caspase-1 and IL-1β. The findings suggest that excessive activation of the NLRP3 inflammasome results in overproduction of downstream IL-1β, which participates in the pathogenesis of human IVD degeneration. Therefore, the NLRP3 inflammasome might serve as a potential therapeutic target for the prevention and treatment of IVD degeneration.
-
In medicine, the neuroanatomy of the oculomotor (III), trochlear (IV), and abducens nerves (VI) is learned essentially by cadaver dissection, histological specimens, and MRI. However, these methods have many limitations and it is necessary to compensate for the insufficiencies of previous methods. The aim of this research was to present sectioned images and surface models that allow the whole courses of III, IV, and VI and circumjacent structures to be observed in detail. ⋯ In addition, the surface models allowed the stereoscopic shapes and positions of III, IV, and VI to be comprehended. The sectioned images and surface models could be applied for medical education purposes or training tools. All data generated during this study is available free of charge at anatomy.dongguk.ac.kr/cn/.