The anatomical record : advances in integrative anatomy and evolutionary biology
-
Animal models are used to examine the results of experimental spinal cord injury. Alterations in spinal cord blood supply caused by complex spinal cord injuries contribute significantly to the diversity and severity of the spinal cord damage, particularly ischemic changes. ⋯ This provides researchers with a valuable tool for the selection of the most suitable animal model for their experiments in the study of spinal cord ischemia and provides clinicians with a basis for the appropriate translation of research work to their clinical applications. Anat Rec, 300:2091-2106, 2017. © 2017 Wiley Periodicals, Inc.
-
Within the central nervous system, the olfactory system represents one of the most exciting scenarios since it presents relevant examples of long-life sustained neurogenesis and continuous axonal outgrowth from the olfactory epithelium with the subsequent plasticity phenomena in the olfactory bulb. The olfactory nerve is composed of nonmyelinated axons with interesting ontogenetic interpretations. However, the centripetal projections from the olfactory bulb are myelinated axons which project to more caudal areas along the lateral olfactory tract. ⋯ Recently, we have described a new patho-physiological role of this protein in the absence of spontaneous remyelination in multiple sclerosis. In the present review, we hypothesize about how both main and satellite neurological symptoms of Kallmann syndrome may be explained by alterations in the myelination. We revisit the relationship between the olfactory system and myelin highlighting that minor histological changes should not be forgotten as putative causes of olfactory malfunction.
-
Review Comparative Study
Of pheromones and kairomones: what receptors mediate innate emotional responses?
Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. ⋯ Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation.
-
The phenomenon of ischemic tolerance perfectly describes this quote "What does not kill you makes you stronger." Ischemic pre- or postconditioning is actually the strongest known procedure to prevent or reverse neurodegeneration. It works specifically in sensitive vulnerable neuronal populations, which are represented by pyramidal neurons in the hippocampal CA1 region. However, tolerance is effective in other brain cell populations as well. ⋯ Delayed neuronal death is the slow development of postischemic neurodegeneration. This allows an opportunity for a great therapeutic window of 2-3 days to reverse the cellular death process. Moreover, it seems that the mechanisms of ischemic tolerance-delayed postconditioning could be used not only after ischemia but also in some other processes leading to apoptosis.
-
Sepsis causes significant alterations in the hepatic macro- and microcirculation. Diverging views exist on global hepatic blood flow during experimental sepsis because of the large variety in animal and sepsis models. Fluid-resuscitated clinical sepsis is characterized by ongoing liver ischemia due to a defective oxygen extraction despite enhanced perfusion. ⋯ Possible interactions between these mediators are not well understood, and their therapeutic manipulation produces equivocal or disappointing results. Whether and how standard resuscitation therapy influences the hepatic microvascular response to sepsis is unknown. Indirect evidence supports the concept that improving the microcirculation may prevent or ameliorate sepsis-induced organ failure.