The anatomical record : advances in integrative anatomy and evolutionary biology
-
Propofol has been used for many years but its functional target in the intact brain remains unclear. In the present study, we used functional magnetic resonance imaging to demonstrate blood oxygen level dependence signal changes in the normal human brain during propofol anesthesia and explored the possible action targets of propofol. Ten healthy subjects were enrolled in two experimental sessions. ⋯ While in the thalamus, the signal decrease was observed in 5 of 10 of the subjects and the magnitude of decrease was 3.9%±1.6%. These results suggest that there is most significant inhibition in hypothalamus, frontal lobe, and temporal in propofol anesthesia and moderate inhibition in thalamus. These brain regions might be the targets of propofol anesthesia in human brain.
-
To investigate matrix metalloproteinase-9 (MMP-9) mRNA and vascular endothelial growth factor (VEGF) protein expression in gastric carcinoma and its correlation with microvascular density, growth-pattern, invasion, metastasis, and prognosis. In situ hybridization of MMP-9 mRNA and immunohistochemistry of VEGF and CD34 proteins were performed on surgical specimens of gastric cancers from 118 patients compared with 20 nonmalignant gastric mucosae. Their relationships to pathological parameters and survival times were determined by statistical analysis. ⋯ Patients with higher MMP-9 mRNA and VEGF expression demonstrated vivid tumor angiogenesis and poor 5-year survival rate. MMP-9 and VEGF expression is associated with enhanced tumor angiogenesis and may play crucial roles in the invasion and metastasis of gastric carcinoma. Therefore, MMP-9 and VEGF may represent prognostic biomarkers and promising targets for therapeutic intervention.
-
It is known that selective sacral roots rhizotomy is effective for relieving the neurogenic bladder associated with spinal cord injury. The goal of this study is to review the surgical anatomy of the lumbosacral nerve rootlets and to provide some morphological bases for highly selective sacral roots rhizotomy. Spinal cord dissections were performed on five cadavers under surgical microscope. ⋯ Each subbundle further gave out two to three rootlets connected with the spinal cord; (2) there were no significant differences in the number of rootlets within the L1 to S2 segments, but the size of rootlets and the length of nerve roots varied (P < 0.05); and (3) the more myelinated fibers a rootlet contained, the larger transection area it had. The area of peripheral nervous system myelin positive cells and the total area of rootlets were correlated (P < 0.001). Thus, during highly selective sacral roots rhizotomy, the ventral and dorsal roots can be divided into several bundles of rootlets, and we could initially distinct the rootlets by their diameters.
-
In this morphological study, we report on the three-dimensional microvascular architecture constituting the toes of a patient affected by diabetic microangiopathy. We applied corrosion casting (CC) technique to the toes of a patient affected by Type 2 diabetes, who underwent surgery for explantation of inferior left limb due to necrotic processes of soft tissues. The toes of a foot traumatically explanted in a motorcycle accident were kept as controls. ⋯ This preliminary report represents only the first step for further investigations regarding morphological three-dimensional appearance of diabetic microangiopathy. CC and scanning electron microscopy technique well documented these morphological modifications, highlighting on both structural and ultrastructural features of diabetic toes microvessels. In conclusion, our qualitative data try to better focus on the pathophysiological mechanisms involved in diabetic dermopathy and microangiopathy, proposing CC as useful method to investigate on them.
-
Alcohol consumption interferes with gastrointestinal transit causing symptoms in alcoholic patients. Nitric oxide (NO), synthesized by neuronal nitric oxide synthase (nNOS) plays an important role in the control of gastrointestinal motility. Our aim was to investigate whether chronic alcohol intake in a murine model induces gastrointestinal motility disturbances and affects the nitrergic myenteric neurons in the stomach and jejunum. ⋯ The proportion of nNOS-immunoreactive neurons did not change in the stomach, whereas in the jejunum the percentage decreased from 33% to 27% (P < 0.001) after chronic alcohol intake. The total number of myenteric neurons remained unchanged. These results suggest that chronic alcohol consumption disturbs gastric and small intestinal motility in vivo and in vitro and is associated with a decrease in the proportion of nNOS-immunoreactive myenteric neurons in the murine jejunum.