Journal of microscopy
-
Journal of microscopy · Apr 2021
Phase determination in dual phase steels via HREBSD-based tetragonality mapping.
Electron Backscatter Diffraction (EBSD) is a widely used approach for characterising the microstructure of various materials. However, it is difficult to accurately distinguish similar (body centred cubic and body centred tetragonal, with small tetragonality) phases in steels using standard EBSD software. One method to tackle the problem of phase distinction is to measure the tetragonality of the phases, which can be done using simulated patterns and cross-correlation techniques to detect distortion away from a perfectly cubic crystal lattice. ⋯ The error in tetragonality measurements appears to be of the order of 1%, thus producing a commensurate error in carbon content estimation. Such an error makes an estimate of total carbon content particularly unsuitable for low carbon steels; although maps of local carbon content may still be revealing. Application of the method developed in this paper will lead to better understanding of the complex microstructures of steels, and the potential to design microstructures that deliver higher strength and ductility for common applications, such as vehicle components.