ACS nano
-
We have measured the dispersibility of single-walled carbon nanotubes in a range of solvents, observing values as high as 3.5 mg/mL. By plotting the nanotube dispersibility as a function of the Hansen solubility parameters of the solvents, we have confirmed that successful solvents occupy a well-defined range of Hansen parameter space. The level of dispersibility is more sensitive to the dispersive Hansen parameter than the polar or H-bonding Hansen parameter. ⋯ We show that solubility parameters based on surface energy give equivalent results to Hansen solubility parameters. However, we note that, contrary to solubility theory, a number of nonsolvents for nanotubes have both Hansen and surface energy solubility parameters similar to those calculated for nanotubes. The nature of the distinction between solvents and nonsolvents remains to be fully understood.
-
We report high-performance fully transparent thin-film transistors (TTFTs) on both rigid and flexible substrates with transfer printed aligned nanotubes as the active channel and indium-tin oxide as the source, drain, and gate electrodes. Such transistors have been fabricated through low-temperature processing, which allowed device fabrication even on flexible substrates. Transparent transistors with high effective mobilities (approximately 1300 cm(2) V(-1) s(-1)) were first demonstrated on glass substrates via engineering of the source and drain contacts, and high on/off ratio (3 x 10(4)) was achieved using electrical breakdown. ⋯ All of the devices showed good transparency (approximately 80% on average). The transparent transistors were further utilized to construct a fully transparent and flexible logic inverter on a plastic substrate and also used to control commercial GaN light-emitting diodes (LEDs) with light intensity modulation of 10(3). Our results suggest that aligned nanotubes have great potential to work as building blocks for future transparent electronics.