Biology of reproduction
-
Biology of reproduction · Oct 2019
Aminophylline and progesterone prevent inflammation-induced preterm parturition in the mouse†.
Although progesterone (P4) supplementation is the most widely used therapy for the prevention of preterm labor (PTL), reports of its clinical efficacy have been conflicting. We have previously shown that the anti-inflammatory effects of P4 can be enhanced by increasing intracellular cyclic adenosine monophosphate (cAMP) levels in primary human myometrial cells. Here, we have examined whether adding aminophylline (Am), a non-specific phosphodiesterase inhibitor that increases intracellular cAMP levels, to P4 might improve its efficacy using in vivo and in vitro models of PTL. ⋯ There was no effect of the combination of P4 and Am on an ex vivo assessment of myometrial contractility. In human myometrial cells and myometrial tissue explants, we found that the combination had marked anti-inflammatory effects, reducing cytokine and COX-2 mRNA and protein levels to a greater extent than either agent alone. These data suggest that the combination of P4 and Am has a more potent anti-inflammatory effect than either agent alone and may be an effective combination in women at high-risk of PTL.
-
Biology of reproduction · Sep 2019
ReviewThe epigenetic impacts of endocrine disruptors on female reproduction across generations†.
Humans and animals are repeatedly exposed to endocrine disruptors, many of which are ubiquitous in the environment. Endocrine disruptors interfere with hormone action; thus, causing non-monotonic dose responses that are atypical of standard toxicant exposures. The female reproductive system is particularly susceptible to the effects of endocrine disruptors. ⋯ Subsequently, developing reproductive tissues can be predisposed to diseases in adulthood and these diseases can be passed down to future generations. The mechanisms of action by which endocrine disruptors cause disease transmission to future generations are thought to include epigenetic modifications. This review highlights the effects of endocrine disruptors on the female reproductive system, with an emphasis on the multi- and transgenerational epigenetic effects of these exposures.
-
Globally, sepsis is a major cause of mortality through the combination of cardiovascular collapse and multiorgan dysfunction. Pregnancy appears to increase the risk of death in sepsis, but the exact reason for the greater severity is unclear. In this study, we used polymicrobial sepsis induced by cecal ligation and puncture (CLP) and high-dose intraperitoneal lipopolysaccharide (LPS; 10 or 40 mg, serotype 0111: B4) to test the hypotheses that pregnant mice are more susceptible to sepsis and that this susceptibility was mediated through an excessive innate response causing a more severe cardiovascular collapse rather than a reduction in microbe killing. ⋯ Sepsis-related mortality was markedly greater in pregnant mice. Cardiovascular collapse and organ dysfunction occurred sooner in pregnancy, but bacterial killing was similar. Circulating and tissue cytokine levels were similar, but immune cell extravasation into other organs was greater in pregnant mice. These data suggest that an excessive innate immune system response as shown by the exaggerated lung infiltration of leukocytes may be responsible for the greater mortality. Approaches that reduce off-site trafficking may improve the prognosis of sepsis in pregnancy.
-
Biology of reproduction · Mar 2018
Progesterone, the maternal immune system and the onset of parturition in the mouse.
The role of progesterone (P4) in the regulation of the local (uterine) and systemic innate immune system, myometrial expression of connexin 43 (Cx-43) and cyclooxygenase 2 (COX-2), and the onset of parturition was examined in (i) naïve mice delivering at term; (ii) E16 mice treated with RU486 (P4-antagonist) to induce preterm parturition; and (iii) in mice treated with P4 to prevent term parturition. In naïve mice, myometrial neutrophil and monocyte numbers peaked at E18 and declined with the onset of parturition. In contrast, circulating monocytes did not change and although neutrophils were increased with pregnancy, they did not change across gestation. ⋯ In mice treated with P4, the gestation-linked increase in myometrial monocyte, but not neutrophil, numbers was prevented, and expression of Cx-43 and COX-2 was reduced. On E20 of P4 supplementation, myometrial chemokine/cytokine and leukocyte numbers, but not Cx-43 and COX-2 expression, increased. These data show that during pregnancy P4 controls myometrial monocyte infiltration, cytokine and prolabor factor synthesis via mRNA-dependent and independent mechanisms and, with prolonged P4 supplementation, P4 action is repressed resulting in increased myometrial inflammation.
-
Biology of reproduction · Aug 2017
The response of the innate immune and cardiovascular systems to LPS in pregnant and nonpregnant mice.
Sepsis is the leading cause of direct maternal mortality, but there are no data directly comparing the response to sepsis in pregnant and nonpregnant (NP) individuals. This study uses a mouse model of sepsis to test the hypothesis that the cardiovascular response to sepsis is more marked during pregnancy. Female CD1 mice had radiotelemetry probes implanted and were time mated. ⋯ We conclude that endotoxemia induces a more marked hypotensive response in pregnant compared to NP mice. These changes were not associated with a more marked systemic inflammatory response in pregnant mice, although monocyte lung margination was greater. The more marked hypotensive response to LPS may explain the greater vulnerability to some infections exhibited by pregnant women.