Journal of the mechanical behavior of biomedical materials
-
J Mech Behav Biomed Mater · Jan 2010
Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.
Porous metallic materials can have a low Young's modulus, which is approximately equal to that of human bone, by controlling the porosity. On the other hand, certain medical polymers exhibit biofunctionalities that are not intrinsically present in metallic materials. Therefore, a composite consisting of these materials is expected to possess both these advantages for biomedical applications. ⋯ Particularly, the improvement in the tensile strength of pTi pretreated using a silane coupling agent before PMMA filling is greater than that of the non-pretreated pTi because the stress concentration near the pores may be reduced by the improvement in the interfacial adhesiveness between the titanium particles and the PMMA. In contrast, the effect of the PMMA filling on the Young's modulus of pTi is smaller than that on the tensile strength because the Young's modulus of PMMA is considerably lower than that of pTi. Further, tensile strengths and Young's moduli comparable to the tensile strength and Young's modulus of the human bone are successfully obtained in the case of some pTi/PMMA samples.