Oxidative medicine and cellular longevity
-
Oxid Med Cell Longev · Jan 2016
ReviewOxidative Stress and Salvia miltiorrhiza in Aging-Associated Cardiovascular Diseases.
Aging-associated cardiovascular diseases (CVDs) have some risk factors that are closely related to oxidative stress. Salvia miltiorrhiza (SM) has been used commonly to treat CVDs for hundreds of years in the Chinese community. We aimed to explore the effects of SM on oxidative stress in aging-associated CVDs. ⋯ SM also increases the activities of catalase, manganese superoxide dismutase, glutathione peroxidase, and coupled endothelial nitric oxide synthase. In addition, SM reduces the impact of ischemia/reperfusion injury, prevents cardiac fibrosis after myocardial infarction, preserves cardiac function in coronary disease, maintains the integrity of the blood-brain barrier, and promotes self-renewal and proliferation of neural stem/progenitor cells in stroke. However, future clinical well-designed and randomized control trials will be necessary to confirm the efficacy of SM in aging-associated CVDs.
-
Oxid Med Cell Longev · Jan 2016
ReviewDual Role of ROS as Signal and Stress Agents: Iron Tips the Balance in favor of Toxic Effects.
Iron is essential for life, while also being potentially harmful. Therefore, its level is strictly monitored and complex pathways have evolved to keep iron safely bound to transport or storage proteins, thereby maintaining homeostasis at the cellular and systemic levels. These sequestration mechanisms ensure that mildly reactive oxygen species like anion superoxide and hydrogen peroxide, which are continuously generated in cells living under aerobic conditions, keep their physiologic role in cell signaling while escaping iron-catalyzed transformation in the highly toxic hydroxyl radical. In this review, we describe the multifaceted systems regulating cellular and body iron homeostasis and discuss how altered iron balance may lead to oxidative damage in some pathophysiological settings.