Injury
-
The combination of high-resolution three-dimensional medical imaging, increased computing power, and modern computational methods provide unprecedented capabilities for assessing the repair and healing of fractured bone. Fracture healing is a natural process that restores the mechanical integrity of bone and is greatly influenced by the prevailing mechanical environment. Mechanobiological theories have been proposed to provide greater insight into the relationships between mechanics (stress and strain) and biology. ⋯ Medical imaging systems have significantly advanced the capability for less invasive visualization of injured musculoskeletal tissues, but all too often the consideration of these rich datasets has stopped at the level of subjective observation. Computational image analysis methods have not yet been applied to study fracture healing, but two comparable challenges which have been addressed in this general area are the evaluation of fracture severity and of fracture-associated soft tissue injury. CT-based methodologies developed to assess and quantify these factors are described and results presented to show the potential of these analysis methods.
-
Current evidence indicates that fracture healing assessment is limited to the use of one or two domains (such as pain, range of motion or mobility) in any single study. Functional outcome measures, which include physician-rated or observer-based impairment ratings and patient self-reported or observer-based activity limitation measures, better position the effectiveness of a given intervention towards patient-important outcomes. ⋯ We recommend outcome measures with established and verified reliability and validity. Policy-makers and other stakeholders need to have an accurate assessment of treatment outcome that includes changes in function over time-adequate measures, should be re-applied at periodic intervals.