Injury
-
The progress of fracture healing is directly related to an increasing stiffness and strength of the healing fracture. Similarly the weight bearing capacity of a bone directly relates to the mechanical stability of the fracture. Therefore, assessing the progress of fracture repair can be based on the measurement of the mechanical stability of the healing fracture. ⋯ At lower frequencies the perturbations are induced in the form of vibration and at higher frequencies in the form of ultrasonic waves. Both methods provide surrogates for the mechanical properties at the fracture site. Although biomechanical properties of a healing fracture provide a direct and clinically relevant measure for fracture healing, their application will in the near future be limited to clinical studies or research settings.
-
Imaging of a healing fracture provides a non-invasive and often instructive reproduction of the fracture repair progress and the healing status of bone. However, the interpretation of this reproduction is often qualitative and provides only an indirect and surrogate measure of the mechanical stability of the healing fracture. Refinements of the available imaging techniques have been suggested to more accurately determine the healing status of bone. ⋯ Absorptiometric measures including dual X-ray absorptiometry and computed tomography provide quantitative information on the amount and the density of newly formed bone around the site of the fracture. To include the effect of spatial distribution of newly formed bone, finite element models of healing fracture can be employed to estimate its load bearing capacity. Ultrasound technology not only avoids radiation doses to the patients but also provides the ability to additionally measure vascularity in the surrounding soft tissue of the fracture and in the fracture itself.
-
Assessment of gait and function might be as sensitive tool to monitor the progress of fracture healing. Currently available assessment tools for function use instrumented three dimensional gait analysis or pedobarography. The analysis is focused on gait or movement parameters and seeks to identify abnormalities or asymmetries between legs or arms. ⋯ Alternative approaches abstain from directly assessing function in the laboratory but rather determine the amount of activities of daily living or the mere ability to perform defined tasks such as walking, stair climbing or running. Some of these methods have been applied to determine recovery after orthopaedic interventions including fracture repair. The combination of lab-based functional measurements and assessment of physical activities in daily live may offer a valuable level of information about the gait quality and quantity of individual patients which sheds light on functional limitations or rehabilitation of gait and mobility after a disease or injury and the respective conservative, medical or surgical treatment.
-
The combination of high-resolution three-dimensional medical imaging, increased computing power, and modern computational methods provide unprecedented capabilities for assessing the repair and healing of fractured bone. Fracture healing is a natural process that restores the mechanical integrity of bone and is greatly influenced by the prevailing mechanical environment. Mechanobiological theories have been proposed to provide greater insight into the relationships between mechanics (stress and strain) and biology. ⋯ Medical imaging systems have significantly advanced the capability for less invasive visualization of injured musculoskeletal tissues, but all too often the consideration of these rich datasets has stopped at the level of subjective observation. Computational image analysis methods have not yet been applied to study fracture healing, but two comparable challenges which have been addressed in this general area are the evaluation of fracture severity and of fracture-associated soft tissue injury. CT-based methodologies developed to assess and quantify these factors are described and results presented to show the potential of these analysis methods.
-
Fracture healing is a critically important clinical event for fracture patients and for clinicians who take care of them. The clinical evaluation of fracture healing is based on both radiographic findings and clinical findings. Risk factors for delayed union and nonunion include patient dependent factors such as advanced age, medical comorbidities, smoking, non-steroidal anti-inflammatory use, various genetic disorders, metabolic disease and nutritional deficiency. ⋯ Non-unions are difficult to treat and have a high financial impact. Indirect costs, such as productivity losses, are the key driver for the overall costs in fracture and non-union patients. Therefore, all strategies that help to reduce healing time with faster resumption of work and activities not only improve medical outcome for the patient, they also help reduce the financial burden in fracture and non-union patients.