Injury
-
Extracorporeal shockwave therapy is a treatment modality, originally introduced into the clinic as lithotripsie, which has also been successfully used in the last two decades in the non-invasive treatment of delayed or non-healing fractures. Initially, the mechanism of action was attributed to microfracture-induced repair, but intensive basic research has now shown that the shockwave generates its effect in tissue via mechanotransduction. ⋯ The attainable outcome is comparable to surgery but avoiding an open approach with associated potential complications. These advantageous properties with a clearly positive cost-benefit ratio make shockwave therapy a first line treatment in delayed and non-union fractures.
-
Introduction Nonunion after fixation of long bones negatively impacts outcomes and requires additional surgery. The ability to predict likelihood of nonunion after tibial shaft fracture would be helpful to clinicians and patients. The goal of this work was to combine three previous models of tibial shaft nonunion at different time points into one overall model that incorporates time as a continuous variable. ⋯ Conclusions We created a NURD 2.0 score that predicts nonunion at various time points during the first 3 months after fracture. The new model is a notable improvement over previous models. A computerized version allows surgeons and patients to use the score when making treatment decisions regarding need for nonunion surgery.
-
Brainstem, which connects the distal part of the brain and the spinal cord, contains main motor and sensory nerves and facilitates communication between the cerebrum, cerebellum, and spinal cord. Due to the complicated anatomy and neurostructure of brainstem, surgical interventions to resect brainstem tumors are particularly challenging, and new approaches to reduce the risk of surgical brain injury are of utmost importance. Although previous studies have investigated the structural anisotropy of brain white matter, the effect of axonal fibers on the mechanical properties of white matter has not yet been fully understood. ⋯ The results showed that the tearing energy and failure strain of samples with axons parallel to the force direction were approximately 1.5 times higher than the samples with axons perpendicular to the force direction. The results also revealed that as the sample's initial length increases, its failure strain decreases. These results emphasize the importance of the axon orientation in the mechanical properties of brainstem, and suggest that considering the directional-dependent behavior for this tissue could help to propose new surgical interventions for reducing the risk of injury during tumor resection.
-
Implant loosening, bone healing failure, implant-associated infections, and large bony defects remain challenges in orthopedic surgery. Implant surface modifications and coatings are being developed to promote osteointegration, prevent colonization by bacteria, and release bioactive factors. The following mini-review briefly discusses the clinical problem, explains the four "osteos", presents examples of coatings used for different orthopedic indications, and finally raises awareness of the coating and translational requirements.
-
The fracture repair process is known to be delayed in postmenopausal women, under estrogen-deficient status. Osteoporotic fracture mainly occurs in the metaphyseal region of the long bone; however, most studies on fracture healing have focused on the diaphyseal region. In this study, we compared the repair process between metaphysis and diaphysis of ovariectomized (OVX) and Sham mice, and analyzed the effects of short-term estrogen administration in OVX mice. ⋯ Estrogen administration improved medullary callus formation in the diaphysis, however not in the metaphysis. The effect of ovariectomy on the repair process in diaphysis was greater than that in metaphysis. Our findings clarify the differences between the metaphysis and diaphysis repair process using OVX mouse model and suggest that the estrogen sensitivities differ between the sites during the bone repair process.