Journal of healthcare engineering
-
Ontario has shown an increasing number of emergency department (ED) visits, particularly for mental health and addiction (MHA) complaints. Given the current opioid crises Canada is facing and the legalization of recreational cannabis in October 2018, the number of MHA visits to the ED is expected to grow even further. In face of these events, we examine capacity planning alternatives for the ED of an academic hospital in Toronto. ⋯ We then employ a discrete-event simulation model to analyze the impacts of the following scenarios: (a) increasing overall demand to the ED, (b) increasing or decreasing number of ED visits due to substance abuse, and (c) adjusting resource capacity to address the forecasted demand. Key performance indicators used in this analysis are the overall ED length of stay (LOS) and the total number of patients treated in the Psychiatric Emergency Services Unit (PESU) as a percentage of the total number of MHA visits. Our results showed that if resource capacity is not adjusted, ED LOS will deteriorate considerably given the expected growth in demand; programs that aim to reduce the number of alcohol and/or opioid visits can greatly aid in reducing ED wait times; the legalization of recreational use of cannabis will have minimal impact, and increasing the number of PESU beds can provide great aid in reducing ED pressure.
-
Early detection and classification of pulmonary nodules using computer-aided diagnosis (CAD) systems is useful in reducing mortality rates of lung cancer. In this paper, we propose a new deep learning method to improve classification accuracy of pulmonary nodules in computed tomography (CT) scans. ⋯ We evaluated our method on the LIDC/IDRI dataset extracted by the LUNA16 challenge. The experiments showed that our deep learning method with focal loss is a high-quality classifier with an accuracy of 97.2%, sensitivity of 96.0%, and specificity of 97.3%.
-
Review
Portable Near-Infrared Technologies and Devices for Noninvasive Assessment of Tissue Hemodynamics.
Tissue hemodynamics, including the blood flow, oxygenation, and oxygen metabolism, are closely associated with many diseases. As one of the portable optical technologies to explore human physiology and assist in healthcare, near-infrared diffuse optical spectroscopy (NIRS) for tissue oxygenation measurement has been developed for four decades. In recent years, a dynamic NIRS technology, namely, diffuse correlation spectroscopy (DCS), has been emerging as a portable tool for tissue blood flow measurement. ⋯ Then, we elaborate on the NIRS instrumentation, either commercially available or custom-made, as well as their applications to physiological studies and clinic. The extension of NIRS/DCS from spectroscopy to imaging was depicted, followed by introductions of advanced algorithms that were recently proposed. The future prospective of the NIRS/DCS and their feasibilities for routine utilization in hospital is finally discussed.
-
For patients with cognitive disorders and dementia, accurate prognosis of cognitive worsening is critical to their ability to prepare for the future, in collaboration with health-care providers. Despite multiple efforts to apply computational brain magnetic resonance image (MRI) analysis in predicting cognitive worsening, with several successes, brain MRI is not routinely quantified in clinical settings to guide prognosis and clinical decision-making. To encourage the clinical use of a cutting-edge image segmentation method, we developed a prediction model as part of an established web-based cloud platform, MRICloud. ⋯ This MRICloud prediction model was then applied to a test dataset of clinically acquired MRIs from the Johns Hopkins Memory and Alzheimer's Treatment Center (MATC), a clinical care setting. In the latter setting, the model had both sensitivity and specificity of 1.0 in predicting substantial cognitive worsening. While the MRICloud prediction model demonstrated promise as a platform on which computational MRI findings can easily be extended to clinical use, further study with a larger number of patients is needed for validation.
-
Patients with suspected spinal cord injuries undergo numerous transfers throughout treatment and care. Effective c-spine stabilization is crucial to minimize the impacts of the suspected injury. Healthcare professionals are trained to perform those transfers using simulation; however, the feedback on the manoeuvre is subjective. ⋯ In this scenario, 55% of the c-spine motion could be explained by the difficulty of rescuers to maintain head and trunk alignment during the rotation part of the log-roll and their difficulty to initiate specific phases of the motion synchronously. Conclusion. The proposed quantitative approach has the potential to be used for personalized feedback during training sessions and could even be embedded into simulation mannequins to provide an innovative training solution.