Journal of healthcare engineering
-
Review
Portable Near-Infrared Technologies and Devices for Noninvasive Assessment of Tissue Hemodynamics.
Tissue hemodynamics, including the blood flow, oxygenation, and oxygen metabolism, are closely associated with many diseases. As one of the portable optical technologies to explore human physiology and assist in healthcare, near-infrared diffuse optical spectroscopy (NIRS) for tissue oxygenation measurement has been developed for four decades. In recent years, a dynamic NIRS technology, namely, diffuse correlation spectroscopy (DCS), has been emerging as a portable tool for tissue blood flow measurement. ⋯ Then, we elaborate on the NIRS instrumentation, either commercially available or custom-made, as well as their applications to physiological studies and clinic. The extension of NIRS/DCS from spectroscopy to imaging was depicted, followed by introductions of advanced algorithms that were recently proposed. The future prospective of the NIRS/DCS and their feasibilities for routine utilization in hospital is finally discussed.
-
Electrocardiogram (ECG) signal analysis has received special attention of the researchers in the recent past because of its ability to divulge crucial information about the electrophysiology of the heart and the autonomic nervous system activity in a noninvasive manner. Analysis of the ECG signals has been explored using both linear and nonlinear methods. However, the nonlinear methods of ECG signal analysis are gaining popularity because of their robustness in feature extraction and classification. The current study presents a review of the nonlinear signal analysis methods, namely, reconstructed phase space analysis, Lyapunov exponents, correlation dimension, detrended fluctuation analysis (DFA), recurrence plot, Poincaré plot, approximate entropy, and sample entropy along with their recent applications in the ECG signal analysis.
-
Minimally invasive measurement of cardiac output as a central component of advanced haemodynamic monitoring has been increasingly recognised as a potential means of improving perioperative outcomes in patients undergoing major surgery. Methods based upon pulmonary carbon dioxide elimination are among the oldest techniques in this field, with comparable accuracy and precision to other techniques. ⋯ The accuracy and precision of this approach to cardiac output measurement has been shown to be similar to other minimally invasive techniques. This paper reviews the underlying principles and evolution of the method, and future directions including recent adaptations designed to deliver continuous breath-by-breath monitoring of cardiac output.