Developmental cognitive neuroscience
-
Touch, such as a caress, can be interpreted as very pleasant. The emotional valence assigned to touch is likely related to certain bottom-up factors, such as optimal activation of C-tactile (CT) afferents. It is however unclear if besides somatosensory input, contextual factors related to the own body also play a role in the perceived pleasantness of touch. ⋯ After slow velocity stroking ratings on perceived pleasantness (but not on perceived unpleasantness) were modulated by visual condition, with veridical vision of the arm resulting in higher pleasantness ratings than both no vision and pixelated vision. We conclude that contextual processes affect the perceived pleasantness of touch. These findings shed a new light on the underlying mechanisms of how humans experience pleasant touch and show that pleasant touch not solely dependents on bottom up information.
-
Adolescence is a time of dramatic changes in brain structure and function, and the adolescent brain is highly susceptible to being altered by experiences like substance use. However, there is much we have yet to learn about how these experiences influence brain development, how they promote or interfere with later health outcomes, or even what healthy brain development looks like. ⋯ At the same time, several Institutes across the NIH recognized the value of collaborating in such a project because of its ability to address the role of biological, environmental, and behavioral factors like gender, pubertal hormones, sports participation, and social/economic disparities on brain development as well as their association with the emergence and progression of substance use and mental illness including suicide risk. Thus, the Adolescent Brain Cognitive Development study was created to answer the most pressing public health questions of our day.
-
The perirhinal cortex is known to support high-level perceptual abilities as well as familiarity judgments that may affect recognition memory. We tested whether poor perceptual abilities or a loss of familiarity judgment contributed to the recognition memory impairments reported earlier in monkeys with PRh lesions received in infancy (Neo-PRh) (Weiss and Bachevalier, 2016; Zeamer et al., 2015). ⋯ However, the same Neo-PRh monkeys were slower to acquire the Constant Negative task, requiring more exposures to objects before judging them as familiar compared to control animals. Taken together, the data help to account for the differential patterns of functional compensation on previously reported recognition tasks following neonatal versus adult-onset PRh lesions, and provide further support to the view that the PRh is involved in familiarity processes.
-
Review
Multiple forms of metaplasticity at a single hippocampal synapse during late postnatal development.
Metaplasticity refers to adjustment in the requirements for induction of synaptic plasticity based on the prior history of activity. Numerous forms of developmental metaplasticity are observed at Schaffer collateral synapses in the rat hippocampus at the end of the third postnatal week. ⋯ Thus, many forms of plasticity expressed at SC-CA1 synapses are different in rats younger and older than 3 weeks of age, illustrating the complex orchestration of physiological modifications that underlie the maturation of hippocampal excitatory synaptic transmission. This review paper describes three late postnatal modifications to synaptic plasticity induction in the hippocampus and attempts to relate these metaplastic changes to developmental alterations in hippocampal network activity and the maturation of contextual learning.
-
Studies in animal models generate and test hypotheses regarding developmental stage-specific vulnerability that might inform research questions about human development. In both rats and humans, peer relationships are qualitatively different in adolescence than at other stages of development, and social experiences in adolescence are considered important determinants of adult social function. ⋯ We discuss the role of hypothalamic-pituitary-adrenal (HPA) function and glucocorticoid release in conferring differential susceptibility to social experiences in adolescents compared to adults. We propose that although differential perception of social experiences rather than immature HPA function may underlie the heightened vulnerability of adolescents to social instability, the changes in the trajectory of brain development and resultant social deficits likely are mediated by the heightened glucocorticoid release in response to repeated social stressors in adolescence compared to in adulthood.