Postgraduate medical journal
-
A novel coronavirus (severe acute respiratory syndrome-CoV-2) that initially originated from Wuhan, China, in December 2019 has already caused a pandemic. While this novel coronavirus disease (COVID-19) frequently induces mild diseases, it has also generated severe diseases among certain populations, including older-aged individuals with underlying diseases, such as cardiovascular disease and diabetes. ⋯ We are trying to reduce the reproduction number of COVID-19 to less than one and eventually succeed in controlling this outbreak using methods such as contact tracing, quarantine, testing, isolation, social distancing and school closure. This report aimed to describe the current situation of COVID-19 in South Korea and our response to this outbreak.
-
All animal life on earth is thought to have a common origin and have common genetic mechanisms. Evolution has enabled differentiation of species. ⋯ These infections from related species are known as zoonoses. COVID-19 is the latest example of a virus entering another species but HIV (and various strains of influenza) were previous examples.
-
Review Comparative Study
Endocrine changes in SARS-CoV-2 patients and lessons from SARS-CoV.
Coronavirus infection outbreaks have occurred frequently in the last two decades and have led to significant mortality. Despite the focus on reducing mortality by preventing the spread of the virus, patients have died due to several other complications of the illness. The understanding of pathological mechanisms and their implications is continuously evolving. ⋯ Similar pathological and biochemical changes are being reported with the novel coronavirus disease outbreak in 2020. In this review, we focus on these endocrine changes that have been reported in both SARS coronavirus and SARS coronavirus-2. As we battle the pandemic, it becomes imperative to address these underlying endocrine disturbances that are contributing towards or predicting mortality of these patients.
-
This article reviews the correlation between ACE2 and COVID-19 and the resulting acute respiratory distress syndrome (ARDS). ACE2 is a crucial component of the renin-angiotensin system (RAS). The classical ACE-angiotensin Ⅱ (Ang II)-angiotensin type 1 receptor (AT1R) axis and the ACE2-Ang(1-7)-Mas counter-regulatory axis play an essential role in RAS system. ⋯ Because of these protective effects of ACE2 on ARDS, the development of drugs enhancing ACE2 activity may become one of the most promising approaches for the treatment of COVID-19 in the near future. In the meantime, however, the use of RAS blockers such as ACE inhibitors and angiotensin II receptor blockers that inhibit the damaging (ACE-Ang II) arm of the RAS cascade in the lung may also be promising. Trial registration number: NCT04287686.
-
Since the first cases in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread across the globe, resulting in the COVID-19 pandemic. Early clinical experiences have demonstrated the wide spectrum of SARS-CoV-2 presentations, including various reports of atypical presentations of COVID-19 and possible mimic conditions. This article summarises the current evidence surrounding atypical presentations of COVID-19 including neurological, cardiovascular, gastrointestinal, otorhinolaryngology and geriatric features. ⋯ While SARS-CoV-2 is likely to remain on the differential diagnostic list for a plethora of presentations for the foreseeable future, clinicians should be cautious of ignoring other potential diagnoses due to availability bias. An awareness of atypical presentations allows SARS-CoV-2 to be a differential so that it can be appropriately investigated. A knowledge of infectious mimics prevents COVID-19 from overshadowing other diagnoses, hence preventing delayed diagnosis or even misdiagnosis and consequent adverse outcomes for patients.