Neuropharmacology
-
Gamma-aminobutyric acid (GABA)-containing interneurons of the ventral tegmental area (VTA) regulate the activity of dopaminergic neurons. These GABAergic interneurons are known to be innervated by synaptic terminals containing enkephalin, an endogenous ligand of mu-opioid receptors. Bath application of mu-opioid receptor agonists inhibits the activity of VTA GABAergic neurons but the mechanism whereby mu-opioid receptors regulate synaptic GABA release from these neurons has not been directly identified. ⋯ The inhibition of action potential-evoked IPSCs and of spontaneous and ionomycin-evoked mIPSCs by DAMGO was prevented by the K(+) channel blocker, 4-aminopyridine (4-AP). In conclusion, our work shows that one of the mechanisms through which mu-opioid receptors inhibit GABA release by VTA neurons is through inhibition of the secretory process at the nerve terminal level. In addition, considering that ionomycin stimulates exocytosis through a mechanism that should be insensitive to membrane polarization, our experiments with 4-AP suggest that K(+) channels are implicated in the inhibition of the efficacy of the secretory process by mu-opioid receptors.
-
Sensory neural dysfunction is common in patients with peripheral neuropathy, a major complication of diabetes mellitus. In animal models of inflammatory and neuropathic pain cannabinoids potently attenuate pain behaviour, cannabinoid (CB) receptors located on nociceptive primary afferent neurones being important in their anti-hyperalgesic actions. A key measure of sensory neurone function is stimulus-evoked neuropeptide release. ⋯ Anandamide (100 nM) did not significantly inhibit capsaicin-evoked CGRP release from the paw skin of diabetic animals, but it did produce a small stimulation of CGRP release at high concentrations (10 microM). These data suggest that peripheral CB(1) receptors mediate inhibition of capsaicin-evoked neuropeptide release from the paw skin of both non-diabetic and diabetic animals. However, pathological changes in the diabetic animals appear to preclude the non-CB(1) receptor mediated inhibitory action of the endogenous cannabinoid, anandamide.
-
We examined the effect of a chronic imipramine treatment (10 mg/kg, i.p., once daily for 21 days) on the expression and function of metabotropic glutamate (mGlu) receptors in discrete regions of the rat brain. Chronic imipiramine treatment up-regulated the expression of mGlu2/3 receptor proteins in the hippocampus, nucleus accumbens, cerebral cortex and corpus striatum. Expression of mGlu1a receptor protein was increased exclusively in the hippocampus, whereas no changes in the expression of mGlu4 and mGlu5 receptors or Homer-1a protein were detected. ⋯ In addition, 1S,3R-ACPD-stimulated PI hydrolysis was no longer enhanced in imipramine-treated rats when the mGlu2/3 component of the PI response was abrogated by the antagonist, LY341495. In contrast, the ability of LY379268 to inhibit forskolin-stimulated cAMP formation was reduced in hippocampal slices of rats chronically treated with imipramine. Taken together, these results suggest that neuroadaptive changes in the expression and function of mGlu2/3 receptors occur in response to chronic antidepressants.