IEEE journal of biomedical and health informatics
-
IEEE J Biomed Health Inform · May 2019
A Lightweight Multi-Section CNN for Lung Nodule Classification and Malignancy Estimation.
The size and shape of a nodule are the essential indicators of malignancy in lung cancer diagnosis. However, effectively capturing the nodule's structural information from CT scans in a computer-aided system is a challenging task. Unlike previous models that proposed computationally intensive deep ensemble models or three-dimensional CNN models, we propose a lightweight, multiple view sampling based multi-section CNN architecture. ⋯ It achieved the state-of-the-art performance with a mean 93.18% classification accuracy. The architecture could also be used to select the representative cross sections determining the nodule's malignancy that facilitates in the interpretation of results. Because of being lightweight, the model could be ported to mobile devices, which brings the power of artificial intelligence (AI) driven application directly into the practitioner's hand.