IEEE journal of biomedical and health informatics
-
IEEE J Biomed Health Inform · Feb 2020
Deep Interpretable Early Warning System for the Detection of Clinical Deterioration.
Assessment of physiological instability preceding adverse events on hospital wards has been previously investigated through clinical early warning score systems. Early warning scores are simple to use yet they consider data as independent and identically distributed random variables. Deep learning applications are able to learn from sequential data, however they lack interpretability and are thus difficult to deploy in clinical settings. ⋯ DEWS achieved superior accuracy than the state-of-the-art that is currently implemented in clinical settings, the National Early Warning Score, in terms of the overall area under the receiver operating characteristic curve (AUROC) (0.880 vs. 0.866) and when evaluated independently for each of the three outcomes. Our attention-based architecture was able to recognize 'historical' trends in the data that are most correlated with the predicted probability. With high sensitivity, improved clinical utility and increased interpretability, our model can be easily deployed in clinical settings to supplement existing EWS systems.