Biochimie
-
The structure and metabolism of HDL are linked to their major apolipoproteins (apo) A-I and A-II. HDL metabolism is very dynamic and depends on the constant remodeling by lipases, lipid transfer proteins and receptors. HDL exert several cardioprotective effects, through their antioxidant and antiinflammatory capacities and through the stimulation of reverse cholesterol transport from extrahepatic tissues to the liver for excretion into bile. ⋯ Clinical studies coupled with proteomic analyses revealed the presence of dysfunctional HDL in patients with cardiovascular disease. Beyond HDL cholesterol, a new notion is the functionality of HDL particles. In spite of abundant literature on HDL metabolic properties, a major question remains unanswered: which HDL particle(s) confer(s) protection against cardiovascular risk?
-
In septic shock patients, alterations of plasma phospholipid fatty acid profile have never been described. The purpose of this monocentric, non-interventional, observational prospective study was to describe this fatty acid profile in the early phase of septic shock in intensive care unit. Thirty-seven adult patients with septic shock were included after the first day of stay in intensive care unit, before any form of artificial nutritional support. ⋯ Low levels of plasma long chain PUFAs (≥20 carbons) were significantly associated with mortality at 28th day. In conclusion, plasma phospholipid FA profile of septic patients is very characteristic, close to that of acute respiratory distress syndrome and mortality is associated with long chain PUFA decrease. This profile could be explained by numerous non-exclusive physio-pathological processes 1) an activation of hepatic de novo lipogenesis that could contribute to hepatic steatosis, 2) an elevated adipose tissue lipolysis, 3) an increased free radical attack of FA by oxidative stress, 4) an over-production of inflammatory lipid mediators.
-
It is known that cobalamin (Cbl) deficiency damages myelin by increasing tumor necrosis factor (TNF)-α and decreasing epidermal growth factor (EGF) levels in rat central nervous system (CNS), and affects the peripheral nervous system (PNS) morphologically and functionally. It is also known that some polyneuropathies not due to Cbl deficiency are connected with increased TNF-α levels, and that various cytokines (including TNF-α) and growth factors regulate the in vitro synthesis of normal prions (PrP(C)s). Given that there is extensive evidence that PrP(C)s play a key role in the maintenance of CNS and PNS myelin, we investigated whether the PrP(C) octapeptide repeat (OR) region is involved in the pathogenesis of rat Cbl-deficient (Cbl-D) polyneuropathy. ⋯ These findings demonstrate that Cbl deficiency induces excess PrP(C)s and thereby excess OR regions, which seem to be responsible for the PNS myelin damage, as has recently been found in the case of CNS myelin damage [66]. Furthermore, excess TNF-α is also involved in the pathogenesis of Cbl-D polyneuropathy. In conclusion, we have extended the list of prion diseases by adding one caused by excess PrP(C)s and the polyneuropathies related to excess TNF-α.
-
Citrullination, the conversion of peptidylarginine to peptidylcitrulline is catalyzed by peptidylarginine deiminases (PAD). The expression of PAD isoforms displays great variation among different tissues as demonstrated by PAD mRNA analyses. Here we have analyzed the differential expression of PAD2, PAD4 and PAD6 in mouse tissues at the protein level and by enzymatic activity assays using PAD2 and PAD4 knock-out strains. ⋯ Our data demonstrate that the PAD2 protein is expressed in brain, spinal cord, spleen, skeletal muscle and leukocytes, but not detectably in liver, lung, kidney and testis. PAD4 was detected in each of these tissues, although the expression levels varied. In all tissues where PAD2 was detected, except for blood cells, this PAD isoform appeared to be responsible for virtually all peptidylarginine deiminase activity.
-
Phoneutria nigriventer toxin Tx1 (PnTx1, also referred to in the literature as Tx1) exerts inhibitory effect on neuronal (Na(V)1.2) sodium channels in a way dependent on the holding potential, and competes with μ-conotoxins but not with tetrodotoxin for their binding sites. In the present study we investigated the electrophysiological properties of the recombinant toxin (rPnTx1), which has the complete amino acid sequence of the natural toxin with 3 additional residues: AM on the N-terminal and G on the C-terminal. At the concentration of 1.5 μM, the recombinant toxin inhibits Na(+) currents of dorsal root ganglia neurons (38.4 ± 6.1% inhibition at -80 mV holding potential) and tetrodotoxin-resistant Na(+) currents (26.2 ± 4.9% at the same holding potential). ⋯ The toxin did not alter the voltage-dependence of channel gating and was effective on Na(V)1.2 channels devoid of inactivation. It was ineffective on neuronal calcium channels. We conclude that rPnTx1 has a promising selectivity, and that it may be a valuable model to achieve pharmacological activities of interest for the treatment of channelopathies and neuropathic pain.