Biochimie
-
Systemic inflammation plays a pivotal role in a multitude of conditions, including sepsis, trauma, major surgery and burns. However, comprehensive analysis of the pathophysiology underlying this systemic inflammatory response is greatly complicated by variations in the immune response observed in critically ill patients, which is a result of inter-individual differences in comorbidity, comedication, source of infection, causative pathogen, and onset of the inflammatory response. ⋯ As such, the experimental human endotoxemia model does not share the aforementioned clinical limitations and enables us to investigate both the mechanisms of systemic inflammation, as well as to evaluate novel (pharmacological) interventions in humans in vivo. The present review provides a detailed overview of the various designs, organ-specific changes, and strengths and limitations of the experimental human endotoxemia model, with the main focus on its use as a translational model for sepsis research.
-
Toll-like receptor 2 (TLR2), a member of pattern recognition receptors (PRRs) abundant on macrophages, dendritic cells (DCs) and respiratory epithelial cells lining the lung, plays critical role in host immune response against Mycobacterium tuberculosis (MTB) infection. TLR2-mediated elimination of MTB involves multiple pathways such as promoting DCs maturation, generating biased Th1, Th2, Th17 type response, regulating the macrophage activation and cytokine secretion. ⋯ This review summarizes the intricate network of TLR2-mediated signaling and Mycobacteria effectors involved in MTB-host interaction with an aim to find better target for improved tuberculosis control, especially the host-derived therapy targets. TLR2 agonists with potential to be included in novel tuberculosis vaccines are also discussed.
-
The structure and metabolism of HDL are linked to their major apolipoproteins (apo) A-I and A-II. HDL metabolism is very dynamic and depends on the constant remodeling by lipases, lipid transfer proteins and receptors. HDL exert several cardioprotective effects, through their antioxidant and antiinflammatory capacities and through the stimulation of reverse cholesterol transport from extrahepatic tissues to the liver for excretion into bile. ⋯ Clinical studies coupled with proteomic analyses revealed the presence of dysfunctional HDL in patients with cardiovascular disease. Beyond HDL cholesterol, a new notion is the functionality of HDL particles. In spite of abundant literature on HDL metabolic properties, a major question remains unanswered: which HDL particle(s) confer(s) protection against cardiovascular risk?
-
It is known that cobalamin (Cbl) deficiency damages myelin by increasing tumor necrosis factor (TNF)-α and decreasing epidermal growth factor (EGF) levels in rat central nervous system (CNS), and affects the peripheral nervous system (PNS) morphologically and functionally. It is also known that some polyneuropathies not due to Cbl deficiency are connected with increased TNF-α levels, and that various cytokines (including TNF-α) and growth factors regulate the in vitro synthesis of normal prions (PrP(C)s). Given that there is extensive evidence that PrP(C)s play a key role in the maintenance of CNS and PNS myelin, we investigated whether the PrP(C) octapeptide repeat (OR) region is involved in the pathogenesis of rat Cbl-deficient (Cbl-D) polyneuropathy. ⋯ These findings demonstrate that Cbl deficiency induces excess PrP(C)s and thereby excess OR regions, which seem to be responsible for the PNS myelin damage, as has recently been found in the case of CNS myelin damage [66]. Furthermore, excess TNF-α is also involved in the pathogenesis of Cbl-D polyneuropathy. In conclusion, we have extended the list of prion diseases by adding one caused by excess PrP(C)s and the polyneuropathies related to excess TNF-α.
-
The n-6 fatty acid arachidonic acid (AA; 20:4n-6) gives rise to eicosanoid mediators that have established roles in inflammation and AA metabolism is a long recognised target for commonly used anti-inflammatory therapies. It has generally been assumed that all AA-derived eicosanoids are pro-inflammatory. However this is an over-simplification since some actions of eicosanoids are anti-inflammatory (e.g. prostaglandin (PG) E(2) inhibits production of some inflammatory cytokines) and it has been discovered quite recently that PGE(2) inhibits production of inflammatory leukotrienes and induces production of inflammation resolving lipoxin A(4). ⋯ In addition to modifying the profile of lipid-derived mediators, fatty acids can also influence peptide mediator (i.e. cytokine) production. To a certain extent this action may be due to the altered profile of regulatory eicosanoids, but it seems likely that eicosanoid-independent actions are a more important mechanism. Indeed effects on transcription factors that regulate inflammatory gene expression (e.g. nuclear factor kappaB) seem to be important.