Anesthesiology
-
In dogs, sheep, and rats, spinal neostigmine produces analgesia alone and enhances analgesia from alpha 2-adrenergic agonists. This study assesses side effects and analgesia from intrathecal neostigmine in healthy volunteers. ⋯ The incidence and severity of these adverse events from intrathecal neostigmine appears to be affected by dose, method of administration, and baricity of solution. These effects in humans are consistent with studies in animals. Because no unexpected or dangerous side effects occurred, cautious examination of intrathecal neostigmine alone and in combination with other agents for analgesia is warranted.
-
Brain temperature is closely approximated by most body temperature measurements under normal anesthetic conditions. However, when thermal autoregulation is overridden, large temperature gradients may prevail. This study sought to determine which of the standard temperature monitoring sites best approximates brain temperature when deep hypothermia is rapidly induced and reversed during cardiopulmonary bypass. ⋯ When profound hypothermia is rapidly induced and reversed, temperature measurements made at standard monitoring sites may not reflect cerebral temperature. Measurements from the nasopharynx, esophagus, and pulmonary artery tend to match brain temperature best but only with an array of data can one feel comfortable disregarding discordant readings.
-
Management of patients with sinus node dysfunction must consider the stability of subsidiary pacemakers during anesthesia and treatment with antimuscarinic or sympathomimetic drugs. Baroreflex regulation of atrial pacemaker function is known to contribute to the interactions between inhalation anesthetics and catecholamines. Sinoatrial (SA) node excision can be a model for intrinsic SA node dysfunction. Subsidiary atrial pacemakers are expected to emerge after SA node excision, but they may respond differently to humoral and neural modulation. Isolated and combined effects of epinephrine and methylatropine should help characterize subsidiary pacemaker function during anesthesia with halothane, isoflurane, and enflurane. ⋯ Halothane, isoflurane, and enflurane have significant depressant effects on the spontaneous and epinephrine-altered automaticity of subsidiary atrial pacemakers. Depression of subsidiary atrial pacemaker automaticity was most apparent in dogs with muscarinic blockade.