Anesthesiology
-
This study was designed to evaluate the effects of sevoflurane with and without nitrous oxide on human middle cerebral artery (MCA) flow velocity, cerebrovascular carbon dioxide reactivity, and autoregulation compared with the awake state using transcranial Doppler ultrasonography. ⋯ Sevoflurane (1.2 MAC) reduced Vmca compared with the awake condition, whereas the addition of nitrous oxide caused Vmca to increase toward the values obtained in the awake condition. The cerebrovascular carbon dioxide reactivity and autoregulation were well maintained during 1.2 MAC sevoflurane with and without 60% nitrous oxide.
-
Recent evidence for a presynaptic depression of glutamate release produced by volatile anesthetics prompted the current study of isoflurane and halothane effects on glutamate-mediated transmission in the mammalian central nervous system. ⋯ Our results confirm earlier findings that clinically relevant concentrations of volatile anesthetics depress glutamate-mediated synaptic transmission. The observed increases in synaptic facilitation support recent findings from biochemical and electrophysiologic studies indicating presynaptic sites of action contribute to anesthetic-induced depression of excitatory transmission. This anesthetic-induced reduction in glutamate release would contribute to the central nervous system depression associated with anesthesia by adding to postsynaptic depressant actions on glutamate receptors.
-
It has been shown that the spinal facilitation induced by the injury discharge evoked by a nerve constriction injury is crucial in the development of thermal hyperesthesia. Both opioids and alpha 2 agonists have been reported to prevent the development of spinal facilitation evoked by the small afferent input to the spinal cord. Moreover, it has been reported that the thermal hyperesthesia induced by a nerve constriction injury is sympathetically maintained and that spinally administered alpha 2 agonists can modulate the sympathetic outflow from the spinal cord. The current study investigated the effect of spinally administered morphine and clonidine, an alpha 2 agonist, on the development of thermal hyperesthesia induced by nerve constriction injury in the rat. ⋯ Spinal alpha 2 receptors, but not opioid receptors, may play an important role in the development of thermal hyperesthesia induced by a nerve constriction injury. This suggested that the activation of spinal alpha 2 receptor may reduce the sympathetic outflow and this reduction of sympathetic outflow may be the key mechanism that delays the development of thermal hyperesthesia.
-
Pupil size is determined by an interaction between the sympathetic and parasympathetic divisions of the autonomic nervous system. Noxious stimulation dilates the pupil in both unanesthetized and anesthetized humans. In the absence of anesthesia, dilation is primarily mediated by the sympathetic nervous system. In contrast, pupillary dilation in cats given barbiturate or cloralose anesthesia is mediated solely by inhibition of the midbrain parasympathetic nucleus. The mechanism by which noxious stimuli dilate pupils during anesthesia in humans remains unknown. Accordingly, the authors tested the hypothesis that the pupillary dilation in response to noxious stimulation during desflurane anesthesia is primarily a parasympathetic reflex. ⋯ During desflurane anesthesia, pupillary dilation in response to noxious stimulation or desflurane step-up is not mediated by the sympathetic nervous system (as it is in unanesthetized persons). Although inhibition of the pupillo-constrictor nucleus may be the cause of this dilation, the mechanism remains unknown.
-
The mechanism by which volatile anesthetics act on neuronal tissue to produce reversible depression is unknown. Previous studies have identified a potassium current in invertebrate neurons that is activated by volatile anesthetics. The molecular components generating this current are characterized here in greater detail. ⋯ The results demonstrate a unique ability of halothane and isoflurane to activate a specific class of potassium channels. Because potassium channels are important regulators of neuronal excitability within the mammalian central nervous system, background channels such as the S channel may be responsible in part for mediating the action of volatile anesthetics.