Anesthesiology
-
Measuring the effects of intraaortic balloon counterpulsation (IABP) in single cardiac beats may permit an improved understanding of the physiologic mechanisms by which IABP improves the circulation. The objective of the study was to use trans- esophageal echocardiography in combination with hemodynamic measurements to test the hypothesis that IABP improves global left ventricular systolic function selectively in the IABP-augmented cardiac beats by acutely decreasing left ventricular afterload. ⋯ Beat-to-beat echocardiographic and hemodynamic measurements performed in anesthetized cardiac surgical patients during IABP support demonstrated improved left ventricular systolic function and decreased left ventricular systolic wall stress in the cardiac beats immediately after balloon deflation. The relationship between left ventricular systolic function and left ventricular systolic wall stress during IABP support suggests that afterload reduction was an important mechanism by which IABP instantaneously improved circulatory function in anesthetized cardiac surgical patients.
-
Propofol may exert negative inotropic and chronotropic actions in the heart. Single-channel studies show that propofol affects the kinetics of opening and closing of cardiac L-type calcium channels (ICa(L)) without altering channel conductance. The aim of this study was to investigate the mechanisms of depressant effects of propofol on cardiac whole-cell ICa(L). ⋯ The authors conclude tha propofol, at supratherapeutic concentrations, inhibits cardiac ICa(L). This inhibition is mainly due to a shift of inactivation curve and a reduction in slope conductance.