Anesthesiology
-
Neither exsanguination to pulselessness nor cardiac arrest of 30 min duration can be reversed with complete neurologic recovery using conventional resuscitation methods. Techniques that might buy time for transport, surgical hemostasis, and initiation of cardiopulmonary bypass or other resuscitation methods would be valuable. We hypothesized that an aortic flush with high-volume cold normal saline solution at the start of exsanguination cardiac arrest could rapidly preserve cerebral viability during 30 min of complete global ischemia and achieve good outcome. ⋯ A single high-volume flush of cold saline (4 degrees C) into the abdominal aorta given 2 min after the onset of cardiac arrest rapidly induces moderate-to-deep cerebral hypothermia and can result in survival without functional or histologic brain damage, even after 30 min of no blood flow.
-
Hypovolemia decreases the dose requirement for anesthetics, but no data are available for propofol. As it is impossible to study this in patients, a rat model was used in which the influence of hypovolemia on the pharmacokinetics and pharmacodynamics of propofol was investigated. ⋯ An increased hypnotic effect of propofol occurs during hypovolemia in the rat and can be attributed to changes in both pharmacokinetics and end organ sensitivity.