Anesthesiology
-
Randomized Controlled Trial Clinical Trial
Investigation of effective anesthesia induction doses using a wide range of infusion rates with undiluted and diluted propofol.
The influence of infusion rate on the induction dose-response relation has not been investigated over a wide range of infusion rates. In this study, the authors defined the effect of different propofol infusion rates on the times and doses necessary to reach clinical induction of anesthesia. ⋯ Induction dose and time are dependent on infusion rate in a complex manner, and residual dose circulation was a factor in overdose and hemodynamic depression. Hypotension during induction was attenuated by diluted propofol.
-
Medical institutions are under increased economic pressure to schedule elective surgeries efficiently to contain the costs of surgical services. Surgical scheduling is complicated by variability inherent in the duration of surgical procedures. Modeling that variability, in turn, provides a mechanism to generate accurate time estimates. Accurate time estimates are important operationally to improve operating room utilization and strategically to identify surgeons, procedures, or patients whose duration of surgeries differ from what might be expected. ⋯ The authors recommend use of the log-normal model for predicting surgical procedure times for Current Procedural Terminology-anesthesia combinations. The results help to legitimize the use of log transforms to normalize surgical procedure times before hypothesis testing using linear statistical models or other parametric statistical tests to investigate factors affecting the duration of surgeries.
-
Many anesthetic agents are known to enhance the alpha1beta2gamma2S gamma-aminobutyric acid type A (GABAA) chloride current; however, they also depress excitatory neurotransmission. The authors evaluated two hypotheses: intravenous anesthetic agents inhibit glutamate release and any observed inhibition may be secondary to GABAA receptor activation. ⋯ The authors' data indicate that thiopental, propofol, and ketamine inhibit K+-evoked glutamate release from rat cerebrocortical slices. The inhibition produced by thiopental and propofol is mediated by activation of GABAA receptors, revealing a subtle interplay between GABA-releasing (GABAergic) and glutamatergic transmission in anesthetic action.
-
An extracorporeal system was used to investigate the direct coronary vasomotor effects of sevoflurane and desflurane in vivo. The role of the adenosine triphosphate-sensitive potassium channels (KATP channels) in these effects was evaluated. ⋯ Sevoflurane and desflurane have comparable coronary vasodilative effects in in situ canine hearts. The KATP channels play a prominent role in these effects. When compared with data obtained previously in the same model, the coronary vasodilative effects of sevoflurane and desflurane are similar to those of enflurane and halothane but considerably smaller than that of isoflurane.