Anesthesiology
-
Acoustic reflectometry allows the construction of a one-dimensional image of a cavity, such as the airway or the esophagus. The reflectometric area-distance profile consists of a constant cross-sectional area segment (length of endotracheal tube), followed either by a rapid increase in the area beyond the carina (tracheal intubation) or by an immediate decrease in the area (esophageal intubation). ⋯ Acoustic reflectometry is a rapid, noninvasive method by which to determine whether breathing tube placement is correct (tracheal) or incorrect (esophageal). Reflectometry determination of tube placement may be useful in airway emergencies, particularly in cases where visualization of the glottic area is not possible and capnography may fail, as in patients with cardiac arrest.
-
Both pain and the pharmacologic management of pain can cause the undesirable effect of sleep disruption. One goal of basic and clinical neuroscience is to facilitate rational drug development by identifying the brain regions and neurochemical modulators of sleep and pain. Adenosine is thought to be an endogenous sleep promoting substance and adenosinergic compounds can contribute to pain management. In the pontine brain stem adenosine promotes sleep but the effects of pontine adenosine on pain have not been studied. This study tested the hypothesis that an adenosine agonist would cause antinociception when microinjected into pontine reticular formation regions that regulate sleep. ⋯ These preclinical data encourage additional research on the cellular mechanisms by which adenosine in the pontine reticular formation contributes to the supraspinal modulation of pain.
-
General anesthetics inhibit evoked release of classic neurotransmitters. However, their actions on neuropeptide release in the central nervous system have not been well characterized. ⋯ Clinically relevant concentrations of several classes of general anesthetics did not affect basal, KCl-evoked, or veratridine-evoked CCK8s release from isolated rat cortical nerve terminals. This is in contrast to the demonstrable effects of certain general anesthetics on the release of amino acid and catecholamine transmitters. These transmitter-specific presynaptic effects of general anesthetics suggest that anesthetic-sensitive presynaptic targets are not common to all transmitter classes.