Anesthesiology
-
Comparative Study
Effects of alpha(2)-adrenoceptor agonists on perinatal excitotoxic brain injury: comparison of clonidine and dexmedetomidine.
A growing number of children have severe neurologic impairment related to very premature birth. Experimental data suggest that overstimulation of cerebral N-methyl-d-aspartate (NMDA) receptors caused by excessive glutamate release may be involved in the genesis of perinatal hypoxic-ischemic brain injury. alpha(2)-Adrenoceptor agonists are protective in models of brain ischemia in adults. The authors sought to determine whether they prevent perinatal excitotoxic neuronal damage. ⋯ Clonidine and dexmedetomidine are potent neuroprotectors that act by stimulating the alpha(2) adrenoceptors. These results obtained in a murine model of perinatal excitotoxic injury may be relevant to some forms of neonatal brain damage in humans.
-
Comparative Study
Comparison of Amsorb, sodalime, and Baralyme degradation of volatile anesthetics and formation of carbon monoxide and compound a in swine in vivo.
Consequences of volatile anesthetic degradation by carbon dioxide absorbents that contain strong base include formation of compound A from sevoflurane, formation of carbon monoxide (CO) and CO toxicity from desflurane, enflurane and isoflurane, delayed inhalation induction, and increased anesthetic costs. Amsorb (Armstrong Ltd., Coleraine, Northern Ireland) is a new absorbent that does not contain strong base and does not form CO or compound A in vitro. This investigation compared Amsorb, Baralyme (Chemetron Medical Division, Allied Healthcare Products, St. Louis, MO), and sodalime effects on CO (from desflurane and isoflurane) and compound A formation, carboxyhemoglobin (COHb) concentrations, and anesthetic degradation in a clinically relevant porcine in vivo model. ⋯ Amsorb caused minimal if any CO formation, minimal compound A formation regardless of absorbent hydration, and the least amount of sevoflurane degradation. An absorbent like Amsorb, which does not contain strong base or cause anesthetic degradation and formation of toxic products, may have benefit with respect to patient safety, inhalation induction, and anesthetic consumption (cost).
-
Artifact robustness (i.e., size of deviation of an electroencephalographic parameter value from baseline caused by artifacts) and baseline stability (i.e., consistency of median baseline values) of electroencephalographic parameters profoundly influence electroencephalography-based pharmacodynamic parameter estimation and the usefulness of the processed electroencephalogram as measure of the arousal state of the central nervous system (depth of anesthesia). In this study, the authors compared the artifact robustness and the interindividual and intraindividual baseline stability of several univariate descriptors of the electroencephalogram (Shannon entropy, approximate entropy, spectral edge frequency 95, delta ratio, and canonical univariate parameter). ⋯ With regard to robustness against artifacts, the electroencephalographic entropy parameters and the canonical univariate parameter were superior to spectral edge frequency 95 and delta ratio. Electroencephalographic approximate entropy displayed the best interindividual and intraindividual baseline stability.
-
Recently, a new device has been developed to measure cardiac output noninvasively using partial carbon dioxide (CO(2)) rebreathing. Because this technique uses CO(2) rebreathing, the authors suspected that ventilatory settings, such as tidal volume and ventilatory mode, would affect its accuracy: they conducted this study to investigate which parameters affect the accuracy of the measurement. ⋯ Although cardiac output was underreported at small VT values, cardiac output measured by the CO(2) rebreathing technique correlates fairly with that measured by the thermodilution method.