Anesthesiology
-
Adding epinephrine to lidocaine solutions for peripheral nerve block potentiates and prolongs the action, but by incompletely understood mechanisms. In an effort to discriminate the pharmacokinetic from the pharmacodynamic effects of epinephrine, the authors measured the lidocaine content of peripheral nerve over the course of block produced by 0.5% lidocaine, with and without epinephrine, and correlated it with the degree of analgesia. ⋯ Adding epinephrine to lidocaine solutions increases the intensity and duration of sciatic nerve block in the rat. The early increase in intensity is not matched with an increase in intraneural lidocaine content at these early times, although the prolonged duration of block by epinephrine appears to correspond to an enlarged lidocaine content in nerve at later times, as if a very slowly emptying "effector compartment" received a larger share of the dose. The increase in early analgesia without increased lidocaine content may be explained by a pharmacodynamic action of epinephrine that transiently enhances lidocaine's potency, but also by a pharmacokinetic effect that alters the distribution of the same net content of lidocaine within the nerve.
-
Peripheral tissue injury causes a migration of opioid peptide-containing immune cells to the inflamed site. The subsequent release and action of these peptides on opioid receptors localized on peripheral sensory nerve terminals causes endogenous analgesia. The spinal application of opioid drugs blocks the transmission of nociceptive information from peripheral injury. This study investigates the influence of exogenous spinal opioid analgesia on peripheral endogenous opioid analgesia. ⋯ These findings suggest an interplay of central and peripheral mechanisms of pain control. An effective central inhibition of pain apparently signals a reduced need for recruitment of opioid-containing immune cells to injured sites.