Anesthesiology
-
Randomized Controlled Trial Clinical Trial
Awareness: Monitoring versus remembering what happened.
Awareness during anesthesia is foremost assessed with postoperative interviews, which may underestimate its incidence. On-line monitors such as the Bispectral Index and patient response to verbal command are not necessarily commonly used. This study investigated response to command during deep sedation (Bispectral Index 60-70) and the ability of prevailing monitoring techniques to indicate awareness and predict recall. ⋯ The incidence of awareness is underestimated when conscious recall is taken as evidence. Awareness can be monitored on-line with behavioral and modern neurophysiologic measures. Providing feedback during intra-anesthetic awareness helps patients to cope with a potentially stressful situation.
-
Clinical Trial
Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans.
Animal experiments have demonstrated neuroprotection by ketamine. However, because of its propensity to increase cerebral blood flow, metabolism, and intracranial pressure, its use in neurosurgery or trauma patients has been questioned. ⋯ Subanesthetic doses of ketamine induced a global increase in rCBF but no changes in rCMRO2. Consequently, the regional oxygen extraction fraction was decreased. Disturbed coupling of cerebral blood flow and metabolism is, however, considered unlikely because ketamine has been previously shown to increase cerebral glucose metabolism. Only a minor increase in rCBV was detected. Interestingly, the most profound changes in rCBF were observed in structures related to pain processing.
-
Clinical Trial
Effect of increasing depth of propofol anesthesia on upper airway configuration in children.
The upper airway tends to be obstructed during anesthesia in spontaneously breathing patients. The purpose of the current study was to determine the effect of increasing depth of propofol anesthesia on airway size and configuration in children. ⋯ Increasing depth of propofol anesthesia in children is associated with upper airway narrowing that occurs throughout the entire upper airway and is most pronounced in the hypopharynx at the level of the epiglottis.
-
Exposure to nitrous oxide activates brainstem noradrenergic nuclei and descending inhibitory pathways, which produce the acute antinociceptive action of nitrous oxide. Because corticotropin-releasing factor (CRF) can produce activation of noradrenergic neurons in the locus ceruleus, the authors sought to determine whether it might be responsible for the antinociceptive action of nitrous oxide. ⋯ Nitrous oxide activates the CRF system in the brain, which results in stimulation of noradrenergic neurons in the locus ceruleus and its consequent antinociceptive effect.