Anesthesiology
-
Clinical Trial
Sequential effects of increasing propofol sedation on frontal and temporal cortices as indexed by auditory event-related potentials.
It is an open question whether cognitive processes of auditory perception that are mediated by functionally different cortices exhibit the same sensitivity to sedation. The auditory event-related potentials P1, mismatch negativity (MMN), and early right anterior negativity (ERAN) originate from different cortical areas and reflect different stages of auditory processing. The P1 originates mainly from the primary auditory cortex. The MMN is generated in or in the close vicinity of the primary auditory cortex but is also dependent on frontal sources. The ERAN mainly originates from frontal generators. The purpose of the study was to investigate the effects of increasing propofol sedation on different stages of auditory processing as reflected in P1, MMN, and ERAN. ⋯ The results indicate differential effects of propofol sedation on cognitive functions that involve mainly the auditory cortices and cognitive functions that involve the frontal cortices.
-
Preconditioning with isoflurane has been shown to confer cardioprotection via activation of mitochondrial adenosine triphosphate-sensitive K+ (mito K(ATP)) channels. However, the relative contribution of mito K(ATP) channel and non-mito K(ATP) channel mechanisms to isoflurane-mediated cardioprotection has not been investigated. ⋯ Mito K(ATP) channel activation is the essential trigger of both preconditioning with isoflurane and combined preconditioning with isoflurane, adenosine, and S-nitroso-N-acetyl-penicillamine. Mito K(ATP) channel activation is also a crucial mediator of cardioprotection afforded by preconditioning with isoflurane. However, enhanced cardioprotection conferred by combined preconditioning is mediated through both mito K(ATP) channel-dependent and -independent mechanisms.
-
Nerve stimulation guidance (Tsui test) has been reported to be an effective alternative to radiographic imaging for proper catheter placement. The purpose of this study was to examine the success rate and complications of continuous caudal epidural analgesia since the implementation of routine use of the Tsui test at the authors' institution. ⋯ The results of this study suggest that epidural catheter placement via the caudal approach using the Tsui test is an effective and reasonable alternative to direct lumbar and thoracic epidural analgesia in pediatric patients.
-
The authors tested the hypotheses that protein kinase C (PKC)-specific isoform translocation and Src protein tyrosine kinase (PTK) activation play important roles in isoflurane-induced preconditioning in vivo. ⋯ Protein kinase C-delta, PKC-epsilon, and Src PTK mediate isoflurane-induced preconditioning in the intact rat heart. Opening of mitochondrial adenosine triphosphate-sensitive potassium channels and generation of reactive oxygen species are upstream events of PKC activation in this signal transduction process.
-
Anesthetic preconditioning (APC) with sevoflurane reduces myocardial ischemia-reperfusion injury. The authors tested whether two brief exposures to sevoflurane would lead to a better preconditioning state than would a single longer exposure and whether dual exposure to a lower (L) concentration of sevoflurane would achieve an outcome similar to that associated with a single exposure to a higher (H) concentration. ⋯ These results suggest that APC depends not only on the concentration but also on the protocol used for preconditioning. Similarly to ischemic preconditioning, repeated application of the volatile anesthetic seems to be more important than the duration of exposure in initiating the signaling sequence that elicits APC at clinically relevant concentrations. Therefore, repeated cycles of anesthetic exposure followed by volatile anesthetic-free periods may be beneficial for APC in the clinical setting.