Anesthesiology
-
Perinatal stroke is a common human disease. Neonatal brains are immature and engaged in active synaptogenesis. Preconditioning adult rats with the volatile anesthetic isoflurane induces neuroprotection. Whether isoflurane preconditioning induces neuroprotection in neonates is not known. ⋯ Isoflurane preconditioning induces neuroprotection in neonatal rats. This neuroprotection is inducible nitric oxide synthase-dependent.
-
Randomized Controlled Trial Clinical Trial
Effects of short-term fenoldopam infusion on gastric mucosal blood flow in septic shock.
Inadequate splanchnic perfusion in septic shock is associated with increased morbidity and mortality. As result of splanchnic ischemia, mucosal permeability increases. Considering the implication of improved mucosal perfusion in terms of maintenance of mucosal barrier integrity, dopamine-1 receptor stimulation could be helpful in septic shock. The goal of the current study was to determine the effects of fenoldopam on systemic hemodynamic parameters and gastric mucosal perfusion in patients with septic shock. Furthermore, the authors tested the hypothesis that the addition of fenoldopam (0.1 microg x kg(-1) x min(-1)) to a combination of norepinephrine and dobutamine (5 microg x kg(-1) x min(-1)) may improve gastric mucosal perfusion in septic shock. ⋯ The study showed that, for the same mean arterial pressure, short-term fenoldopam infusion increased gastric mucosal perfusion in patients with septic shock.
-
The neuropeptide nocistatin (NST) has been implicated in the modulation of nociceptive responses in the spinal cord. Depending on the dose, both pronociceptive and antinociceptive effects have repeatedly been reported. The pronociceptive effect is most likely attributable to inhibition of synaptic glycine and gamma-aminobutyric acid release and a subsequent reduction in the activation of inhibitory glycine and gamma-aminobutyric acid receptors, but the mechanisms of its antinociceptive action have hitherto remained elusive. It has recently been demonstrated that synaptically released glycine contributes to N-methyl-D-aspartate receptor activation. The authors therefore investigated whether a reduction in glycine release might also account for the antinociceptive action of NST in neuropathic rats. ⋯ These results demonstrate that NST produces a biphasic dose-dependent effect on neuropathic pain. The spinal antinociception by NST is most likely attributable to inhibition of glycine-dependent N-methyl-D-aspartate receptor activation.