Anesthesiology
-
Based on age-dependent differences in pulmonary mechanics, the effect of neuromuscular blockade may differ in infants compared with older children. The aim of this study was to determine the impact of neuromuscular blockade and its reversal by positive end-expiratory pressure (PEEP) on functional residual capacity (FRC) and ventilation distribution in young infants and preschool children. ⋯ Although the use of neuromuscular blockade decreased FRC and ventilation distribution substantially in both groups, the changes were more pronounced in young infants. With PEEP, FRC increased and ventilation homogeneity was restored. These results provide a rationale to use PEEP in anesthetized, paralyzed infants and children.
-
Mitochondria produce metabolic energy, serve as biosensors for oxidative stress, and eventually become effector organelles for cell death through apoptosis. The extent to which these manifold mitochondrial functions are altered by previously unrecognized actions of anesthetic agents seems to explain and link a wide variety of perioperative phenomena that are currently of interest to anesthesiologists from both a clinical and a scientific perspective. In addition, many surgical patients may be at increased perioperative risk because of inherited or acquired mitochondrial dysfunction leading to increased oxidative stress. This review summarizes the essential aspects of the bioenergetic process, presents current knowledge regarding the effects of anesthetics on mitochondrial function and the extent to which mitochondrial state determines anesthetic requirement and potential anesthetic toxicity, and considers some of the many implications that our knowledge of mitochondrial dysfunction poses for anesthetic management and perioperative medicine.
-
Ketamine and S(+)-ketamine have been advocated for neuraxial use in the management of postoperative pain and severe intractable pain syndromes unresponsive to opioid escalation. Although clinical experience has accumulated with S(+)-ketamine, safety data on toxicity in the central nervous system after neuraxial administration of S(+)-ketamine are conflicting. In this study, neurologic and toxicologic effects on the spinal cord from repeated daily intrathecal administration of commercially available, preservative-free S(+)-ketamine were evaluated against placebo in a randomized, blinded design. ⋯ The authors conclude that repeated intrathecal administration of preservative-free S(+)-ketamine in a clinically relevant concentration and dosage has, considering the extent and severity of the lesions, a toxic effect on the central nervous system of rabbits.