Anesthesiology
-
Animal and human studies indicate that genetics may contribute to the variability of morphine efficacy. A recent report suggested that cancer patients homozygous for the 118G allele caused by the single nucleotide polymorphism at nucleotide position 118 in the mu-opioid receptor gene require higher doses of morphine to relieve pain. The purpose of the current study was to investigate whether this polymorphism contributes to the variability of morphine efficacy in women who undergo abdominal total hysterectomy. ⋯ Genetic variation of the mu-opioid receptor may contribute to interindividual differences in postoperative morphine consumption. In the future, identifying single nucleotide polymorphisms of patients may provide information to modulate the analgesic dosage of opioid for better pain control.
-
Minto et al. (Anesthesiology 2000) described a mathematical approach based on response surface methods for characterizing drug-drug interactions between several intravenous anesthetic drugs. To extend this effort, the authors developed a flexible interaction model based on the general Hill dose-response relation that includes a set of parameters that can be statistically assessed for interaction significance. ⋯ The new model can accurately classify additive and synergistic drug interactions. It also can classify antagonistic interactions with biologically rational surfaces. This has been a problem for other interaction models in the past. The statistically assessable interaction parameters provide a quantitative manner to assess the interaction significance.
-
The mechanisms underlying the therapeutic actions of gabapentin remain poorly understood. The chemical structure and behavioral properties of gabapentin strongly suggest actions on inhibitory neurotransmission mediated by gamma-aminobutyric acid (GABA); however, gabapentin does not directly modulate GABAA or GABAB receptors. Two distinct forms of GABAergic inhibition occur in the brain: postsynaptic conductance and a persistent tonic inhibitory conductance primarily generated by extrasynaptic GABAA receptors. The aim of this study was to determine whether gabapentin increased the tonic conductance in hippocampal neurons in vitro. As a positive control, the effects of vigabatrin, which irreversibly inhibits GABA transaminase, were also examined. ⋯ Gabapentin increases a tonic inhibitory conductance in mammalian neurons. High-affinity GABAA receptors that generate the tonic conductance may detect small increases in the ambient concentration of neurotransmitter caused by gabapentin.