Anesthesiology
-
Loss of consciousness (LOC) and immobility to surgical incision seem to be mediated at different levels of the central nervous system. Pharmacologic studies of hypnotic agents have previously focused on combinations of either volatile or intravenous anesthetics. This study examined the combination of inhaled sevoflurane and intravenous propofol at these two clinically relevant anesthetic end points. ⋯ Propofol and sevoflurane interact in a simple additive manner to produce LOC and immobility to surgical incision, suggesting a common mechanism or a single site of action. These clinical observations are consistent with a single site of interaction at the gamma-aminobutyric acid type A receptor.
-
Previous studies have shown that propofol and sevoflurane enhance the function of gamma-aminobutyric acid type A (GABAA) receptors. However, it is not known whether these two drugs modulate the same molecular pathways. In addition, little is known about receptor function in the presence of both propofol and sevoflurane. The aim of this study was to better understand the interactions of propofol and sevoflurane with the GABAA receptor. ⋯ Response surface modeling of the potentiation of GABA responses (0.3-1,000 microm) by sevoflurane and propofol revealed that the two anesthetics modulated receptor function in an additive manner. These results are consistent with recent mutagenesis studies, suggesting that these two drugs have separate binding sites and converging pathways of action on the GABAA receptor.
-
Local anesthetic-induced direct neurotoxicity (paresthesia, failure to regain normal sensory and motor function) is a potentially devastating complication of regional anesthesia. Local anesthetics activate the p38 mitogen-activated protein kinase (MAPK) system, which is involved in apoptotic cell death. The authors therefore investigated in vitro (cultured primary sensory neurons) and in vivo (sciatic nerve block model) the potential neuroprotective effect of the p38 MAPK inhibitor SB203580 administered together with a clinical (lidocaine) or investigational (amitriptyline) local anesthetic. ⋯ The cytotoxic effect of lidocaine and amitriptyline in cultured dorsal root ganglia cells and the nerve degeneration in the rat sciatic nerve model seem, at least in part, to be mediated by apoptosis but seem efficiently blocked by an inhibitor of p38 MAPK, making it conceivable that coinjection might be useful in preventing local anesthetic-induced neurotoxicity.
-
Letter Case Reports
Perinatal diagnosis of malignant hyperthermia susceptibility.