Anesthesiology
-
Despite prolongation of the QTc interval in humans during sevoflurane anesthesia, little is known about the mechanisms that underlie these actions. In rat ventricular myocytes, the effect of sevoflurane on action potential duration and underlying electrophysiologic mechanisms were investigated. ⋯ Action potential prolongation by clinically relevant concentrations of sevoflurane is due to the suppression of transient outward K current in rat ventricular myocytes.
-
Voltage-gated Na channels modulate membrane excitability in excitable tissues. Inhibition of Na channels has been implicated in the effects of volatile anesthetics on both nervous and peripheral excitable tissues. The authors investigated isoform-selective effects of isoflurane on the major Na channel isoforms expressed in excitable tissues. ⋯ Two principal mechanisms contribute to Na channel inhibition by isoflurane: enhanced inactivation due to a hyperpolarizing shift in the voltage dependence of steady state fast inactivation (Nav1.5 approximately Nav1.4 > Nav1.2) and tonic block (Nav1.2 > Nav1.4 approximately Nav1.5). These novel mechanistic differences observed between isoforms suggest a potential pharmacologic basis for discrimination between Na channel isoforms to enhance anesthetic specificity.
-
Bulleyaconitine A (BLA) is an active ingredient of Aconitum bulleyanum plants. BLA has been approved for the treatment of chronic pain and rheumatoid arthritis in China, but its underlying mechanism remains unclear. ⋯ BLA reduces neuronal Na currents strongly at +50 mV in a use-dependent manner. When coinjected with lidocaine or epinephrine, BLA elicits prolonged block of both motor and sensory functions in rats with minimal adverse effects.
-
Neuropathic pain is inadequately treated and poorly understood at the cellular level. Because intracellular Ca signaling critically regulates diverse neuronal functions, the authors examined effects of peripheral nerve injury on the Ca transient that follows neuronal activation. ⋯ A diminished Ca signal in axotomized neurons may be in part due to loss of Ca influx through voltage-gated Ca channels. The upward shift in resting Ca level after activation, which is diminished after axotomy in presumed nociceptive neurons, is a previously unrecognized aspect of neuronal plasticity. These changes in the critical Ca signal may mediate various injury-related abnormalities in Ca-dependent neuronal.