Anesthesiology
-
Biography Historical Article Classical Article
Succinylcholine-induced hyperkalemia and beyond. 1975.
-
The authors compared the neuroprotective effects induced by two ischemic postconditioning methods and sought to determine the roles of phosphatidylinositol 3-kinase-Akt and extracellular signal-regulated kinase (ERK) in this neuroprotection. ⋯ The two postconditioning methods possess comparable neuroprotective effects on the spinal cord and share a common molecular mechanism, in which phosphatidylinositol 3-kinase and ERK pathways play crucial roles.
-
Opioids disrupt sleep and adenosine promotes sleep, but no studies have characterized the effects of opioids on adenosine levels in brain regions known to regulate states of arousal. Delivering opioids to the pontine reticular formation (PRF) and substantia innominata (SI) region of the basal forebrain disrupts sleep. In contrast, administering adenosine agonists to the PRF or SI increases sleep. These findings encouraged the current study testing the hypothesis that microdialysis delivery of opioids to the PRF or SI decreases adenosine levels in the PRF or SI, respectively. ⋯ These data support the interpretation that decreased adenosine levels in sleep-regulating brain regions may be one of the mechanisms by which opioids disrupt sleep.