Anesthesiology
-
The 1996 atenolol study provided evidence that perioperative β-adrenergic receptor blockade (β-blockade) reduced postsurgical mortality. In 1998, the indications for perioperative β-blockade were codified as the Perioperative Cardiac Risk Reduction protocol and implemented at the San Francisco Veterans Administration Medical Center, San Francisco, California. The present study analyzed the association of the pattern of use of perioperative β-blockade with perioperative mortality since introduction of the Perioperative Cardiac Risk Reduction protocol. ⋯ Perioperative β-blockade administered according to the Perioperative Cardiac Risk Reduction protocol is associated with a reduction in 30-day and 1-yr mortality. Perioperative withdrawal of β-blockers is associated with increased mortality.
-
Previous studies have demonstrated that obesity is paradoxically associated with a lower risk of mortality after noncardiac surgery. This study will determine the impact of the modified metabolic syndrome (defined as the presence of obesity, hypertension, and diabetes) on perioperative outcomes. ⋯ Patients with the modified metabolic syndrome undergoing noncardiac surgery are at substantially higher risk of complications compared with patients of normal weight.
-
Delay in defibrillation (more than 2 min) is associated with worse survival in patients with a cardiac arrest because of ventricular fibrillation or pulseless ventricular tachycardia in intensive care units and inpatient wards. ⋯ Delays in defibrillation occurred in one of seven cardiac arrests in the intraoperative and periprocedural arenas. Although delayed defibrillation was associated with lower rates of survival after cardiac arrests in periprocedural areas, there was no association with survival for cardiac arrests in the operating room.
-
Human embryonic stem cell (hESC)-derived cardiomyocytes potentially represent a powerful experimental model complementary to myocardium obtained from patients that is relatively inaccessible for research purposes. We tested whether anesthetic-induced preconditioning (APC) with isoflurane elicits competent protective mechanisms in hESC-derived cardiomyocytes against oxidative stress to be used as a model of human cardiomyocytes for studying preconditioning. ⋯ APC elicits competent protective mechanisms against oxidative stress in hESC-derived cardiomyocytes, suggesting the feasibility to use these cells as a model of human cardiomyocytes for studying APC and potentially other treatments/diseases. Our differentiation protocol is very efficient and yields a high percentage of cardiomyocytes. These results also suggest a promising ability of APC to protect and improve engraftment of hESC-derived cardiomyocytes into the ischemic heart.