Anesthesiology
-
Postoperative cognitive dysfunction occurs frequently after cardiac, major vascular, and major orthopedic surgery. Aging and hypertensive cerebrovascular disease are leading risk factors for this disorder. Acute anemia, common to major surgery, has been identified as a possible contributor to postoperative cognitive dysfunction. The effect of hypoxia upon cognition and the cellular and molecular processes involved in learning and memory has been well described. Cerebrovascular changes related to chronic hypertension may expose cells to increased hypoxia with anemia. ⋯ In a translational model of chronic hypertension, clinically relevant levels of acute anemia were associated with an age-dependent visuospatial working memory and learning impairment that was matched by an age-dependent cellular sensitivity to anemic hypoxia. These data offer support for a possible link between anemic hypoxia and postoperative cognitive dysfunction in humans.
-
Sevoflurane may prolong the corrected QT (QTc) interval in healthy humans when administered for induction and maintenance of anesthesia. Little information is available about the dose-response relationship of sevoflurane on the QTc interval. We performed a pharmacodynamic analysis of the relationship between end-tidal sevoflurane concentration (CET) and the QTc. ⋯ Among patients receiving sevoflurane for anesthesia, QTc interval changes correlate to anesthetic level. The Ce50 for significant QTc change is at clinically relevant levels of sevoflurane anesthesia.
-
Surgical injury induces production and release of inflammatory mediators in the vicinity of the wound. They in turn trigger nociceptive signaling to produce hyperalgesia and pain. Interleukin-1β plays a crucial role in this process. The mechanism regulating production of this cytokine after incision is, however, unknown. Caspase-1 is a key enzyme that cleaves prointerleukin-1β to its active form. We hypothesized that caspase-1 is a crucial regulator of incisional interleukin-1β levels, nociceptive sensitization, and inflammation. ⋯ The current study demonstrates that the inhibition of caspase-1 reduces postsurgical sensitization and inflammation, likely through a caspase-1/interleukin-1β-dependent mechanism.
-
The activity of transient receptor potential vanilloid subtype-1 (TRPV1) receptors, key nociceptive transducers in dorsal root ganglion sensory neurons, is enhanced by protein kinase C epsilon (PKCepsilon) activation. The intravenous anesthetic propofol has been shown to activate PKCepsilon. Our objectives were to examine whether propofol modulates TRPV1 function in dorsal root ganglion neurons via activation of PKCepsilon. ⋯ Our results indicate that propofol modulates TRPV1 sensitivity to capsaicin and that this most likely occurs through a PKCepsilon-mediated phosphorylation of TRPV1.