Anesthesiology
-
Comparative Study
Electroacupuncture improves survival in rats with lethal endotoxemia via the autonomic nervous system.
Recent advances have indicated a complex interplay between the autonomic nervous system and the innate immune system. Targeting neural networks for the treatment of sepsis is being developed as a therapeutic strategy. Because electroacupuncture at select acupoints can modulate activities of the autonomic nervous system, we tested the hypothesis that electroacupuncture at specific acupoints could modulate systemic inflammatory responses and improve survival via its impact on the autonomic nervous system in a rat model of sepsis. ⋯ Electroacupuncture pretreatment has a dramatic survival-enhancing effect in rats with lethal endotoxemia, which involves the activation of efferent neural circuits of the autonomic nervous system (e.g., cholinergic antiinflammatory pathway). This approach could be developed as a prophylactic treatment for sepsis or perioperative conditions related to excessive inflammation.
-
Comparative Study
Effects of regional and whole-body hypothermic treatment before and after median nerve injury on neuropathic pain and glial activation in rat cuneate nucleus.
Neuroprotective effects of hypothermia on peripheral nerve injury remain uncertain. This study investigated the efficacy of hypothermia in attenuating neuropathic pain and glial activation in the cuneate nucleus in a median nerve chronic constriction injury (CCI) model. ⋯ At the early stage following nerve injury, regional and whole-body hypothermia suppresses ectopic discharges, and consequently inhibits glial activation and neuropathic pain. At the later stage, pain processing is mediated mainly by cytokines released from activated microglia; therefore, only whole-body hypothermia is effective in modulating pain.
-
Comparative Study
Impaired nociception and peripheral opioid antinociception in mice lacking both kinin B1 and B2 receptors.
Kinins (e.g., bradykinin) acting through the constitutively expressed B2 and the injury-induced B1 receptors are involved in pain and hyperalgesia, as previously shown by use of receptor-selective antagonists and single-receptor knockout models. Because the overall contribution of kinins to painful processes remains unclear, the aim of this study was to analyze pain-related behaviors of mice unable to respond to kinins because of a lack of both B1 and B2 receptors. ⋯ These data suggest that kinins are important for nociception associated with acute short-lasting inflammation but are less essential in chronic stages of pain. The results also highlight a new protective function of kinins via interactions with the opioid system.