Anesthesiology
-
Because the nuclear factor-κB (NF-κB) coupled pathway is believed to amplify inflammation prevailing in sepsis, the authors tested the hypotheses that the insertion-deletion polymorphism (-94ins/delATTG) (1) alters nuclear translocation of nuclear factor-κB and activator protein-1 (NF-κB1) in monocytes after lipopolysaccharide stimulation; (2) affects lipopolysaccharide-induced NF-κB1 messenger RNA expression, tumor necrosis factor α concentrations, and tissue factor activity; and (3) may be associated with increased 30-day mortality in patients with sepsis. ⋯ The deletion allele of the NFκB1 insertion-deletion (-94ins/delATTG) polymorphism is associated with increased 30-day mortality in patients with severe sepsis and increased reaction of the innate immune system.
-
Helium protects myocardium by inducing preconditioning in animals. We investigated whether human endothelium is preconditioned by helium inhalation in vivo. ⋯ Helium is a nonanesthetic, nontoxic gas without hemodynamic side effects, which induces early and late preconditioning of human endothelium in vivo. Further studies have to investigate whether helium may be an instrument to induce endothelial preconditioning in patients with cardiovascular risk factors.
-
Evoking spinal release of acetylcholine (ACh) produces antinociception in normal animals and reduces hypersensitivity after nerve injury, and some studies suggest that ACh-mediated analgesia relies on γ-aminobutyric acid (GABA)-ergic signaling in the spinal cord. In this study, the authors tested the spinal mechanisms underlying the antihypersensitivity effects of donepezil, a central nervous system-penetrating cholinesterase inhibitor, in a rat model of neuropathic pain. ⋯ Systemic administration of donepezil reduces hypersensitivity after nerve injury by increasing extracellular ACh concentration, which itself induces GABA release in the spinal cord. Activation of this spinal cholinergic-GABAergic interaction represents a promising treatment for neuropathic pain.
-
Knowledge of neural anatomy is fundamental for safe, efficacious use of regional anesthesia. Spinal column procedures, such as a facet joint block, require an accurate understanding of neural pathways relative to anatomic structure. Since Bogduk's report it has been known that human lumbar posterior ramus of the spinal nerve (PRSN) comprises three, equally sized primary branches. However, inconsistencies and controversy remain over the exact locations and pathways of the peripheral portions of the PRSN branches. In this study, the authors investigated the detailed anatomy of the human PRSN. ⋯ The authors created a 3D model of the PRSN in the lumbar segment, which may be useful for planning surgical approaches to dorsal areas of the vertebral column. In addition, this knowledge may improve the accuracy of procedures involving the spinal column, particularly radiofrequency neurolysis of the facet joint.